Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Calcium-Catalyzed Dehydrative Allylation of P-ylides and Sequential Wittig Reaction for Streamlined Access to Versatile 1,4-Dienes

Xiaohong Li^a, Dong Zhang^a, Yan Wang^a, Shiji Xiao^b, Ying Wu^a, Peizhong Xie^a*, and Teck-Peng Loh^{a,c,d}* ^{*a*} School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

^b Jiangsu BioGuide Laboratory Co., Ltd, Wujin Economic Development Zone, Changzhou213000, Jiangsu, China.

^c College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, China.

^d Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

E-mail: peizhongxie@njtech.edu.cn; teckpeng@ntu.edu.sg

Contents

1.	General Information	S1
2.	General Procedure	S1
	2.1 General procedure for preparation of 3	
	2.2 Procedure for gram scale (5.0 mmol) reaction	
	2.3 Optimization of the Reaction Conditions	
3.	Mechanistic Study	S6
4.	Analytical Data for All New Compounds	
5.	References	
5.	NMR Spectra for New Compounds	
6.	X-ray Data Collection and Structure Determinations	

1. General Information

Unless otherwise noted, all commercially available compounds were used as received. All solvents were purified according to standard procedures. NMR spectra were recorded on a JEOL ECS-400S. The ¹H NMR and spectra was recorded at 400MHz, ¹³C NMR was recorded at 101MHz, ¹⁹F NMR and spectra were recorded at 376 MHz. ¹H and ¹³C NMR Chemical shifts were calibrated to tetramethylsilane as an external reference. Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet); coupling constants (*J*) are in Hertz (Hz). IR spectra were recorded on a Thermo Scientific Nicolet iS-5 FT-IR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS were obtained on an IonSpec FT-ICR mass spectrometer with ESI resource. (analyzer type: TOF). Melting points were measured on a RY-I apparatus and are reported uncorrected. The starting materials 1¹ and 2² were readily prepared according to the related literatures. The KPF₆, Triethylamine, dioxane and methyl aldehyde were purchased from *Energy Chemical* (Shanghai). The catalyst Ca(NTf₂)₂ was purchased from TCI (Shanghai).

2. General Procedure

2.1 General procedure for preparation of 3

1 (0.20 mmol), 2 (0.50 mmol, 2.5 equiv.), Ca(NTf₂)₂ (20 mol%), and KPF₆ (20 mol%) was add in a dried Schlenk tube (10 mL), dissolved in dioxane (2 mL) and NEt₃ (25 mol%) subsequently under nitrogen atmosphere. The reaction was stirred at 100 °C for 12h, R²CHO (4.0 equiv.) was then added and stirred for 10h. After complete conversion, the solvent was removed under reduced pressure. The residue was purified by silica gel chromatography or PTLC (for the details, see each compound) to afford the corresponding products **3a-3ai**.

2.2 Procedure for gram scale (5.0 mmol) reaction

Methyl 2-(hydroxy(phenyl)methyl)acrylate **1a** (5.0 mmol), ethyl 2-(triphenyl- λ^5 -phosphaneylidene) acetate **2a** (12.5 mmol), Ca(NTf₂)₂ (20 mol%), and KPF₆ (20 mol%) was add in a dried Schle

nk tube (100 mL), dissolved in dioxane (50 mL) and NEt₃ (25 mol%) subsequently under nitr ogen atmosphere. The reaction was stirred at 100 °C for 12h, HCHO (4.0 equiv.) was then ad ded and stirred for 10h. After complete conversion, the solvent was removed under reduced pr essure. The residue was purified via column chromatography (Petroleum ether (bp: 60-90 °C)/et hyl acetate = 10:1) to afford the corresponding products **3a** in 72% yield (0.99g).

2.3 Optimization of the Reaction Conditions

CO ₂ Me OH Ph	+ H CO ₂ Et PPh ₃ 2a	1) KPF ₆ (20 mol%) Ca(NTf ₂) ₂ (20 mol%) NEt ₃ (25 mol%) solvent, 60 °C 2) HCHO,30 °C	Ph CO ₂ Me CO ₂ Et 3a
Entry	Solve	ent	Yield of 3a (%) ^b
1	DMS	50	NR
2	DM	F	NR
3	DC	E	21
4	CHC	213	27
5	Tolue	ene	39
6	Tert-amyl	alcohol	Trace
7	tBuC	ЭН	52
8	iPrC	Н	48
9	Aceto	one	17
10	dioxa	ane	43
11	aniso	ole	NR
12	Isopropy	l ether	24

Table S1. The effect of solvent on this reaction ^{*a*}.

^{*a*} Experimental condition: **1a** (0.20 mmol), **2a** (0.24 mmol), Ca(NTf₂)₂ (20 mol%), and KPF₆ (20 mol%) dissolved in solvent (2 mL) and NEt₃ (25 mol%) subsequently under nitrogen atmosphere. The reaction was stirred at 100 °C for 12h, HCHO (2.0 equiv.) was then added and stirred for 10h. ^{*b*} The yield of **3a** was determined by ¹H NMR of the crude product with Mesitylene as internal standard.

	CO ₂ Me	1) KPF ₆ (20 m Ca(NTf ₂) ₂ (20 n	ol%) nol%) Ph	CO ₂ Me
	Ph	PPh ₃ Solvent, T ₄ 2) HCHO, T		CO ₂ Et
	1a	2a	² 3a	
Entry	Solvent	T ₁ (°C)	T ₁ (°C)	Yield of $3a (\%)^b$
1	^t BuOH	60	80	45
2	^t BuOH	60	70	44
3	^t BuOH	60	60	49
4	^t BuOH	60	50	35
5	^t BuOH	60	40	37
6	dioxane	120	120	45
7	dioxane	110	110	53
8	dioxane	100	100	54
9	dioxane	90	90	50
10	dioxane	80	80	45
11	dioxane	70	70	43
12	dioxane	60	60	34
13	dioxane	60	50	35
14	dioxane	60	40	41

Table S2. The effect of temperature on this reaction ^{*a*}.

^{*a*} Experimental condition: **1a** (0.20 mmol), **2a** (0.24 mmol), Ca(NTf₂)₂ (20 mol%), and KPF₆ (20 mol%) dissolved in solvent (2 mL) and NEt₃ (25 mol%) subsequently under nitrogen atmosphere for 12h, HCHO (6.0 equiv.) was then added and stirred for 10h. ^{*b*} The yield of **3a** was determined by ¹H NMR of the crude product with Mesitylene as internal standard.

Table S3. Screening the equivalent of 2a^{*a*}.

СО ₂ Ме ОН + Ph 1а	H CO ₂ Et	1) KPF ₆ (20 mol%) a(NTf ₂) ₂ (20 mol%) NEt ₃ (25 mol%) dioxane, 100 °C 2) HCHO	Ph CO ₂ Me CO ₂ Et
Entry	2a (equi	v.)	Yield of 3a (%) ^b
1	1.2		54
2	1.5		67
3	2.0		76
4	2.5		82
5	3.0		83
6	4.0		81
7	5.0		85

^{*a*} Experimental condition: **1a** (0.20 mmol), **2a**, Ca(NTf₂)₂ (20 mol%), and KPF₆ (20 mol%) dissolved in dioxane (2 mL) and NEt₃ (25 mol%) subsequently under nitrogen atmosphere. The reaction was stirred at 100 °C for 12h, HCHO (6.0 equiv.) was then added and stirred for 10h. ^{*b*} The yield of **3a** was determined by ¹H NMR of the crude product with Mesitylene as internal standard.

Table S4. Screening the equivalent of HCHO^{*a*}.

CO ₂ Me		1) KPF ₆ (20 mol%) Ca(NTf ₂) ₂ (20 mol%)	Ph CO ₂ Me
Ph	PPh ₃	NEt ₃ (25 mol%) dioxane, 100 °C 2) HCHO	CO ₂ Et
1a	2a	2,110110	3a
Entry	HCHO (equiv.)	Yield of 3a (%) ^b
1	2.5	5	82
2	3.0)	81
3	4.()	85
4	5.()	82
5	6.0)	82
6	7.0)	83

^{*a*} Experimental condition: **1a** (0.20 mmol), **2a** (0.50 mmol), Ca(NTf₂)₂ (20 mol%), and KPF₆ (20 mol%) dissolved in dioxane (2 mL) and NEt₃ (25 mol%) subsequently under nitrogen atmosphere. The reaction was stirred at 100 °C for 12h, HCHO was then added and stirred for 10h. ^{*b*} The yield of **3a** was determined by ¹H NMR of the crude product with Mesitylene as internal standard.

	CO ₂ Me	1) KPF ₆ (20 mol%) Ca(NTf ₂) ₂ (20 mol%)	Ph CO ₂ Me
	Ph PPh ₃	NEt ₃ (25 mol%) dioxane, 100 °C	CO ₂ Et
	1a 2a	2) ноно	3a
Entry	Catalyst	Add.	Yield of 3a (%) ^b
1	$Ca(NTf_2)_2$	None	75
2	Ca(NTf ₂) ₂	KPF ₆	85
3	$Ca(NTf_2)_2$	^t Bu ₄ NBF ₄	59
4	$Ca(NTf_2)_2$	$AgSbF_6$	Trace
5	$Ca(NTf_2)_2$	$NaSbF_6$	Trace
6	Mg(OTf) ₂	KPF ₆	Trace
7	$Mg(NTf_2)_2$	KPF ₆	25
8	$Ba(NTf_2)_2$	KPF ₆	35
9	Ca(OTf) ₂	KPF ₆	40
10	Cu(OTf) ₂	KPF ₆	NR
11	Al(OTf) ₃	KPF ₆	36
12	None	KPF ₆	NR
13	$CaCl_2$	KPF_6	NR
14	$HNTf_2$	KPF_6	NR

Table S5. The effect of catalyst and additives on this reaction ^{*a*}.

^{*a*} Experimental condition: **1a** (0.20 mmol), **2a** (0.50 mmol), catalyst (20 mol%), and additive (20 mol%) dissolved in dioxane (2 mL) and NEt₃ (25 mol%) subsequently under nitrogen atmosphere. The reaction was stirred at 100 °C for 12h, HCHO (4.0 equiv.) was then added and stirred for 10h. ^{*b*} The yield of **3a** was determined by ¹H NMR of the crude product with Mesitylene as internal standard.

Table S6. The effect of bases on this reaction a.

CO ₂ Me OH + Ph	H CO ₂ Et	1) KPF ₆ (20 mol%) Ca(NTf ₂) ₂ (20 mol%) Bases (25 mol%) dioxane, 100 °C 2) HCHO	Ph CO ₂ Me CO ₂ Et
	Dec	22	Viald of $3e(0/)b$
	Das		1 leiu 01 5a (76) ²
1	DAB	CO	54
2	DBU		41
3	DBN		55
4	NaO	Н	50
5	K ₂ C	O ₃	69
6	КОН		68
7	Nor	ie	74
8	Et ₃]	N	90(88) ^c

^{*a*} Experimental condition: **1a** (0.20 mmol), **2a** (0.50 mmol), $Ca(NTf_2)_2$ (20 mol%), and KPF₆ (20 mol%) dissolved in dioxane (2 mL) and bases (25 mol%) subsequently under nitrogen atmosphere. The reaction was stirred at 100 °C for 12h, HCHO (4.0 equiv.) was then added and stirred for 10h. ^{*b*} The yield of **3a** was determined by ¹H NMR of the crude product with Mesitylene as internal standard. ^{*c*} Isolated yield.

3. Mechanistic Study

3.1 Control experiment.

4. Analytical Data for All New Compounds

5-ethyl 1-methyl (E)-2-benzylidene-4-methylenepentanedioate (3a)

Following the general procedure, the reaction was conducted in 0.2 mmol scale, **3a** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (48.0 mg, 88% yield, E/Z = 96/4 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.37 – 7.32 (m, 5H), 6.29 (s, 1H), 5.49 (s, 1H), 4.25 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 3.57 (s, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 166.9, 142.0, 138.4, 135.0, 129.2, 129.1, 128.9, 128.7, 124.6, 61.0, 52.3, 29.9, 14.3. IR (KBr): 2984, 2952, 1715, 1633, 1447, 1221, 1138, 768, 698 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₆H₁₉O₄ 275.1283; found 275.1278.

1-ethyl 5-methyl (E)-4-(4-methylbenzylidene)-2-methylenepentanedioate (3b)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale, 3b was isolated

by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (48.0 mg, 83% yield, E/Z = 97/3 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.28 (s, 1H), 5.48 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 3.57 (s, 2H), 2.35 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 167.0, 142.1, 139.4, 138.3, 132.1, 129.5, 129.3, 127.8, 124.6, 61.0, 52.3, 29.9, 21.5, 14.3. IR (KBr): 2989, 1715, 1275, 1260, 1137, 1092, 750 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₇H₂₀O₄K 327.0999; found 327.0992.

5-ethyl 1-methyl (E)-2-(4-(tert-butyl)benzylidene)-4-methylenepentanedioate (3c)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale, **3c** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (53.9 mg, 82% yield, E/Z = 96/4 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (s, 1H), 7.39 (d, *J* = 7.4 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 6.28 (s, 1H), 5.49 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 3.59 (s, 2H), 1.35 – 1.31 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 167.0, 152.5, 142.0, 138.3, 132.1, 129.3, 127.8, 125.7, 124.6, 61.1, 52.3, 34.9, 31.3, 30.0, 14.3. IR (KBr): 2960, 2870, 1716, 1274, 1206, 1111, 1092, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₀H₂₇O₄ 331.1909; found 331.1900. **1-ethyl 5-methyl (***E***)-4-(4-methoxybenzylidene)-2-methylenepentanedioate (3d)**

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale, **3d** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as white solid (46 mg, 76% yield, E/Z > 99/1 as determined by ¹H NMR). Mp: 45.4-46.7 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.31 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.9 Hz, 2H), 6.28 (s, 1H), 5.49 (s, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.58 (s, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.7, 167.0, 160.4, 141.8, 138.1, 131.2, 127.5, 126.3, 124.6, 114.2, 61.1, 55.4, 52.2, 29.9, 14.3. IR (KBr): 2952, 2839, 1713, 1605, 1512, 1258, 1177, 1136, 1029, 750 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₇H₂₀O₄K 343.0948; found 343.0942.

1-ethyl 5-methyl (E)-4-(4-fluorobenzylidene)-2-methylenepentanedioate (3e)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale, **3e** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (46.2 mg, 80% yield, E/Z =97/3 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.34 – 7.31 (m, 2H), 7.08 – 7.04 (m, 2H), 6.29 (s, 1H), 5.48 (s, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.80 (s, 3H), 3.54 (s, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 166.8, 163.0 (d, *J* = 250.2 Hz), 140.8, 138.1, 131.2 (d, *J* = 8.4 Hz), 131.1, 128.6, 124.6, 115.8 (d, *J* = 21.6 Hz), 61.1, 52.3, 29.8, 14.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.15. IR (KBr): 2986, 2953, 1716, 1509, 1275, 1227, 1161, 1138, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₆H₁₈O₄F 293.1189; found 293.1193. **5-ethyl 1-methyl (***E***)-2-(4-chlorobenzylidene)-4-methylenepentanedioate (3f)**

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale, **3f** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as white solid (54.3 mg, 88% yield, E/Z > 99/1 as determined by ¹H NMR). Mp: 27.8-29.3 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.34 (d, *J* = 8.6 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 6.29 (s, 1H), 5.47 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 3.53 (s, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 166.7, 140.6, 138.1, 135.1, 133.4, 130.5, 129.5, 129.0, 124.7, 61.1, 52.4, 29.8, 14.3. IR (KBr): 2985, 2953, 1715, 1633, 1492, 1435, 1275, 1260, 1090, 765, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₆H₁₈O₄Cl 309.0894; found 309.0885.

5-ethyl 1-methyl (E)-2-(4-bromobenzylidene)-4-methylenepentanedioate (3g)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale, **3g** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as light yellow solid. (58.8 mg, 84% yield, E/Z = 97/3 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.50 (d, J =7.6 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 6.28 (s, 1H), 5.46 (s, 1H), 4.25 (q, J = 7.6, 7.2 Hz, 2H), 3.79 (s, 3H), 3.52 (s, 2H), 1.32 (t, J = 7.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 166.7, 140.7, 138.1, 133.9, 132.0, 130.7, 129.6, 124.7, 123.4, 61.1, 52.4, 29.9, 14.3. IR (KBr): 2984, 2952, 1716, 1307, 1275, 1138, 1092, 1026, 764, 750 cm⁻¹. HRMS (ESI) m/z: [M + Na]⁺ Calcd. for: C₁₆H₁₇O₄BrNa 375.0208; found 375.0202.

5-ethyl 1-methyl (E)-2-(4-cyanobenzylidene)-4-methylenepentanedioate (3h)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale, **3h** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as white solid (26.0 mg, 48% yield, E/Z = 94/6 as determined by ¹H NMR). Mp: 63.2-64.5 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.68 – 7.65 (m, 2H), 7.44 – 7. (m, 2H), 6.30 (s, 1H), 5.47 (s, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 3.52 (s, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 166.5, 139.6, 138.0, 132.5, 132.1, 129.6, 128.8, 124.9, 118.5, 112.4, 61.2, 52.6, 29.9, 14.3. IR (KBr): 2984, 2229, 1715, 1435, 1261, 1207, 1139, 1092, 764, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₇H₁₈O₄N 300.1236; found 300.1232.

5-ethyl 1-methyl (E)-2-(3-bromobenzylidene)-4-methylenepentanedioate (3i)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale, **3i** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (56.6 mg, 81% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) & 7.82 (s, 1H), 7.47 – 7.45 (m, 2H), 7.2 – 7.23 (m, 2H), 6.29 (s, 1H), 5.47 (s, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 3.80 (s, 3H), 3.53 (s, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) & 168.0, 166.7, 140.2, 138.1, 137.1, 132.1,

131.9, 130.4, 130.2, 127.4, 124.8, 122.7, 61.1, 52.4, 29.7, 14.3. IR (KBr): 2984, 2952, 1716, 1435, 1275, 1201, 1138, 1094, 765, 750 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₆H₁₇O₄BrK 390.9947; found 390.9938.

1-ethyl 5-methyl (E)-4-(3-methylbenzylidene)-2-methylenepentanedioate (3j)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale. **3**j was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (50.0 mg, 87% yield, E/Z = 97/3 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.27 – 7.23 (m, 1H), 7.16 – 7.13 (m, 3H), 6.28 (s, 1H), 5.49 (s, 1H), 4.25 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 3.56 (s, 2H), 2.34 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.5, 166.9, 142.2, 138.4, 138.3, 135.0, 130.1, 129.9, 128.7, 128.6, 126.1, 124.6, 61.0, 52.3, 29.8, 21.5, 14.3. IR (KBr): 2984, 2952, 1716, 1436, 1275, 1207, 1137, 1093, 764, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₇H₂₁O₄ 289.1440; found 289.1448.

1-ethyl 5-methyl (E)-4-(2-methoxybenzylidene)-2-methylenepentanedioate (3k)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3k** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as white solid (54.5 mg, 90% yield, E/Z > 99/1 as determined by ¹H NMR). Mp: 57.6-59.7 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.35 – 7.30 (m, 1H), 7.21 – 7.19 (m, 1H), 6.93 – 6.89 (m, 2H), 6.28 (s, 1H), 5.49 (s, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 3.79 (s, 3H), 3.50 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 166.9, 157.7, 138.9, 137.9, 130.6, 128.9, 128.7, 124.5, 124.1, 120.5, 110.6, 61.0, 55.6, 52.2, 30.0, 14.3. IR (KBr): 2983, 2951, 1715, 1488, 1274, 1138, 1027, 788, 752 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₇H₂₀O₅K 343.0948; found 343.0939.

1-ethyl 5-methyl (E)-4-(2-methylbenzylidene)-2-methylenepentanedioate (31)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **31** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (54.2 mg, 94% yield, E/Z = 97/3 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (s, 1H), 7.24 – 7.14 (m, 4H), 6.25 (s, 1H), 5.45 (s, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.43 (s, 2H), 2.31 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 166.8, 141.2, 139.0, 137.0, 134.4, 130.2, 129.8, 128.9, 127.7, 125.9, 124.4, 61.0, 52.3, 29.6, 20.1, 14.3. IR (KBr): 2985, 2952, 1717, 1633, 1435, 1275, 1260, 1137, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₇H₂₁O₄ 289.1440; found 289.1436.

5-ethyl 1-methyl (E)-2-(2-chlorobenzylidene)-4-methylenepentanedioate (3m)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3m** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (56.5 mg, 92% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (s, 1H), 7.43 – 7.41 (m, 1H), 7.31 – 7.23 (m, 3H), 6.27 (s, 1H), 5.48 (s, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 3.45 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.8, 166.7, 139.0, 138.5, 134.3, 133.7, 131.0, 130.1, 129.8, 129.4, 126.9, 124.8, 61.1, 52.4, 29.7, 14.3. IR (KBr): 2983, 2951, 1715, 1488, 1274, 1138, 1027, 788, 752 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₆H₁₇O₄ClK 347.0452; found 347.0446.

1-ethyl 5-methyl (E)-4-(2-fluorobenzylidene)-2-methylenepentanedioate (3n)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3n** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (46.0 mg, 78% yield, E/Z = 97/3 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (s, 1H), 7.36 – 7.25 (m, 2H), 7.14 – 7.07 (m, 2H), 6.28 (s, 1H), 5.48 (s, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 3.51 (s, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.8, 166.8, 160.6 (d, *J* = 250.1 Hz), 138.3, 134.5 (d, *J* = 4.4 Hz), 131.1, 130.9 (d, *J* = 8.3 Hz), 129.4 (d, *J* = 2.5 Hz), 124.7, 124.2 (d, *J* = 3.8 Hz), 123.1 (d, *J* = 13.4 Hz), 115.8 (d, *J* = 21.6 Hz), 61.1, 52.4, 30.0, 14.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.20. IR (KBr): 2986, 2954, 1716, 1275, 1213, 1138, 1102, 764 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₆H₁₇O₄FK 331.0748; found 331.0757.

5-ethyl 1-methyl (E)-2-(2-bromobenzylidene)-4-methylenepentanedioate (30)

Following the general procedure, The reaction was conducted at 100 °C in 0.2 mmol scale with **30** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (54.9 mg, 78% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (s, 1H), 7.62 – 7.60 (m, 1H), 7.31 – 7.17 (m, 3H), 6.26 (s, 1H), 5.48 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 3.43 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.8, 166.7, 141.1, 138.5, 135.6, 132.9, 130.9, 130.2, 129.4, 127.4, 124.7, 124.3, 61.0, 52.4, 29.5, 14.2. IR (KBr): 3057, 2983, 2906, 2844, 1717, 1633, 1435, 1259, 1206, 1139, 1027, 765, 733 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₆H₁₈O₄Br 353.0388; found 353.0382.

5-ethyl 1-methyl (E)-2-(2,4-dichlorobenzylidene)-4-methylenepentanedioate (3p)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3p** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (61.0 mg, 89% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.45 – 7.44 (m, 1H), 7.25 – 7.18 (m, 2H), 6.26 (s, 1H), 5.46 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 3.43 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 166.5, 138.4, 137.7, 135.3, 135.0, 132.3, 131.6, 130.1, 129.7, 127.3, 124.8, 61.1, 52.5, 29.7, 14.3. IR (KBr): 2984, 2953, 1720, 1585, 1436, 1274, 1207, 1161, 1092, 755 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₆H₁₇O₄Cl₂ 343.0504; found 343.0501.

1-ethyl 5-methyl (E)-2-methylene-4-(naphthalen-2-ylmethylene)pentanedioate (3q)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3q** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (50.5 mg, 79% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 (s, 1H), 7.96 – 7.93 (m, 1H), 7.87 – 7.82 (m, 2H), 7.57 – 7.51 (m, 2H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.36 – 7.34 (m, 1H), 6.25 (s, 1H), 5.50 (s, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.85 (s, 3H), 3.48 (s, 2H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 166.8, 140.3, 139.1, 133.5, 132.4, 131.6, 131.4, 129.3, 128.7, 126.7, 126.3, 125.6, 125.4, 124.6, 124.5, 61.0, 52.4, 30.0, 14.2. IR (KBr): 2984, 2951, 1717, 1435, 1276, 1256, 1137, 1096, 765, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₀H₂₁O₄ 325.1440; found 325.1437.

1-ethyl 5-methyl (E)-2-methylene-4-(pyridin-3-ylmethylene)pentanedioate (3r)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3r** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (19.3 mg, 35% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.62 – 8.55 (m, 2H), 7.87 (s, 1H), 7.66 – 7.63 (m, 1H), 7.33 – 7.30 (m, 1H), 6.30 (s, 1H), 5.48 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 3.55 (s, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.8, 166.6, 150.3, 149.9, 138.2, 138.0, 136.0, 131.3, 130.9, 124.9, 123.6, 61.2, 52.5, 29.9, 14.3. IR (KBr): 2954, 1715, 1275, 1207, 1138, 1091, 764, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₅H₁₈O₄N 276.1236; found 276.1231.

1-ethyl 5-methyl (E)-4-(furan-2-ylmethylene)-2-methylenepentanedioate (3s)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3s** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (50.2 mg, 95% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (s, 1H), 7.50 (d, J = 1.8 Hz, 1H), 6.61 (d, J = 3.4 Hz, 1H), 6.48 – 6.46 (m, 1H), 6.16 (s, 1H), 5.38 (s, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.78 (s, 3H), 3.75 (s, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 167.2, 151.0, 144.8, 137.7, 128.2, 125.1, 124.0, 115.9, 112.2, 61.0, 52.3, 29.8, 14.3. IR (KBr): 2984, 2952, 1713, 1634, 1435, 1275, 1211, 1137, 1091, 750 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd.

for: C₁₄H₁₆O₅K 303.0635; found 303.0638.

Diethyl (E)-2-benzylidene-4-methylenepentanedioate (3t)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3t** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (35.4 mg, 76% yield, E/Z = 97/3 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (s, 1H), 7.37 – 7.33 (m, 5H), 6.29 (s, 1H), 5.50 (s, 1H), 4.25 (q, J = 7.1 Hz, 4H), 3.56 (s, 2H), 1.34 – 1.29 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.9, 166.9, 141.7, 138.5, 135.1, 129.3, 129.2, 129.0, 128.7, 124.6, 61.1, 61.0, 29.8, 14.3, 14.3. IR (KBr): 2987, 1715, 1436, 1275, 1260, 1137, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₇H₂₁O₄ 289.1440; found 289.1431.

1-(tert-butyl) 5-ethyl (E)-2-benzylidene-4-methylenepentanedioate (3u)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3u** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (31.1 mg, 49% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (s, 1H), 7.36 – 7.30 (m, 5H), 6.29 (s, 1H), 5.50 (s, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.51 (s, 2H), 1.50 (s, 9H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 167.0, 140.7, 138.9, 135.4, 130.8, 129.0, 128.8, 128.7, 124.4, 81.0, 61.0, 29.8, 28.1, 14.3. IR (KBr): 2979, 1710, 1274, 1260, 1161, 1095, 764, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₉H₂₅O₄ 317.1753; found 317.1750.

5-ethyl 1-methyl (E)-2-(cyclohexylmethylene)-4-methylenepentanedioate (3v)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3v** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (32.0 mg, 57% yield, E/Z > 99/1 as determined by ¹H NMR) ¹H NMR (400 MHz, Chloroform-*d*) δ 6.79 (d, J = 10.2 Hz, 1H), 6.17 (q, J = 1.5 Hz, 1H), 5.39 (q, J = 1.9 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.71 (s, 3H), 3.33 (s, 2H), 2.31 – 2.21 (m, 1H), 1.76 – 1.64 (m, 3H), 1.63 – 1.55 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.30 – 1.10 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 167.1, 150.6, 138.6, 126.6, 124.3, 60.9, 51.9, 37.9, 32.1, 28.5, 25.8, 25.5, 14.3. IR (KBr): 2927, 2851, 1717, 1436, 1274, 1261, 1138, 1073, 767, 749 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₆H₂₅O₄ 281.1753; found 281.1745.

5-ethyl 1-methyl (E)-2-butylidene-4-methylenepentanedioate (3w)

Following the general procedure, the reaction was conducted at 100 °C in 0.3 mmol scale with **3w** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (33.0 mg, 70% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.97 (t, *J* = 7.5 Hz, 1H), 6.17 (q, *J* = 1.5 Hz, 1H), 5.40 (q, *J* = 1.9 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.72 (s, 3H), 3.34 (s, 2H), 2.14 (q, *J* = 7.4 Hz, 2H), 1.52 – 1.42 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C

NMR (101 MHz, Chloroform-*d*) δ 168.0, 167.1, 145.8, 138.0, 128.7, 124.5, 60.9, 51.9, 30.8, 28.4, 22.0, 14.3, 14.0. IR (KBr): 2960, 2874, 1717, 1274, 1209, 1134, 1095, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₁₃H₂₁O₄ 241.1440; found 241.1443.

1-ethyl 5-methyl (E)-4-heptylidene-2-methylenepentanedioate (3x)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3x** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (42.0 mg, 74% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (401 MHz, Chloroform-*d*) δ 6.97 (t, *J* = 7.5 Hz, 1H), 6.17 (s, 1H), 5.39 (s, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.72 (s, 3H), 3.33 (s, 2H), 2.15 (q, *J* = 7.5 Hz, 2H), 1.47 – 1.37 (m, 2H), 1.35 – 1.26 (m, 9H), 0.91 – 0.85 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.0, 167.0, 146.0, 138.0, 128.6, 124.4, 60.9, 51.9, 31.7, 29.1, 28.8, 28.7, 28.4, 22.6, 14.3, 14.1. IR (KBr): 2929, 2857, 1718, 1436, 1274, 1208, 1137, 764, 750 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₆H₂₆O₄K 321.1468; found 321.1465.

Methyl (E)-4-benzoyl-2-benzylidenepent-4-enoate (3y)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3y** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (20.2 mg, 33% yield, E/Z = 90/10 as determined by ¹H NMR) ¹H NMR (400 MHz, Chloroform-*d*) δ 8.0 (s, 1H), 7.8 – 7.8 (m, 2H), 7.6 – 7.5 (m, 1H), 7.5 (t, *J* = 7.5 Hz, 3H), 7.4 – 7.4 (m, 3H), 7.4 – 7.3 (m, 1H), 5.8 (t, *J* = 1.9 Hz, 1H), 5.7 (t, *J* = 1.5 Hz, 1H), 3.8 (s, 3H), 3.7 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.9, 168.5, 145.6, 142.1, 137.6, 135.1, 133.2, 132.5, 129.7, 129.3, 129.1, 128.8, 128.4, 125.6, 52.3, 30.1. HRMS (ESI/[M+H]⁺) Calcd. For: C₂₀H₁₉O₃ 307.1334; found 307.1331.

Methyl (E)-2-benzylidene-4-(4-methylbenzoyl)pent-4-enoate (3z)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3z** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (24.4 mg, 38% yield, E/Z = 90/10 as determined by ¹H NMR) ¹H NMR (401 MHz, Chloroform-*d*) δ 8.0 (s, 1H), 7.7 (d, J = 8.2 Hz, 2H), 7.4 – 7.3 (m, 5H), 7.3 – 7.2 (m, 2H), 5.7 (s, 1H), 5.7 (s, 1H), 3.8 (s, 3H), 3.7 (s, 2H), 2.4 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.7, 168.5, 145.7, 143.3, 142.1, 135.1, 134.8, 130.0, 129.3, 129.1, 128.8, 128.3, 124.7, 52.3, 30.3, 21.7. HRMS (ESI/[M+H]⁺) Calcd. For: C₂₁H₂₁O₃ 321.1491; found 321.1482.

5-ethyl 1-methyl 2-((*E*)-benzylidene)-4-((*E*)-4-nitrobenzylidene)pentanedioate (3aa)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3aa** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (50.0 mg, 63% yield, E/Z = 61/39 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.1 (d, J = 8.7 Hz, 2H), 7.6 (d, J = 10.4 Hz, 2H), 7.4 – 7.3 (m, 5H), 7.2 – 7.2 (m, 2H), 4.3 (q, J = 7.1 Hz, 2H), 3.9 (s, 2H), 3.7 (s, 3H), 1.3 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 167.5, 147.1, 142.2, 140.1, 136.5, 135.1, 134.8, 129.8, 129.2, 128.8, 128.5, 123.5, 61.4, 52.1, 32.5, 26.1, 14.3. IR (KBr): 2952, 1713, 1596, 1519, 1345, 1250, 1203, 1099, 764, 695 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₂H₂₂O₆N 396.1447; found 396.1440.

5-ethyl 1-methyl 2-((*E*)-benzylidene)-4-((*E*)-3-nitrobenzylidene)pentanedioate (3ab)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3ab** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (55.4 mg, 70% yield, E/Z = 52/48 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.1 – 8.0 (m, 2H), 7.6 (d, J = 7.4 Hz, 2H), 7.5 – 7.5 (m, 1H), 7.5 – 7.3 (m, 2H), 7.3 – 7.3 (m, 2H), 7.2 – 7.2 (m, 2H), 4.2 (q, J = 7.1 Hz, 2H), 3.9 (s, 2H), 3.7 (s, 3H), 1.3 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 167.5, 148.1, 140.2, 137.3, 136.4, 135.1, 134.8, 134.2, 130.1, 129.3, 129.2, 128.7, 128.5, 123.8, 122.9, 61.4, 52.2, 26.0, 14.3. IR (KBr): 2988, 1713, 1530, 1530, 1436, 1351, 1275, 1259, 1205, 1098, 764, 750, 701 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₂H₂₂O₆N 396.1447; found 396.1441. **5-ethyl 1-methyl 2-((***E***)-benzylidene)-4-((***E***)-4-(trifluoromethyl)benzylidene)pentanedioate (3ac)**

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3ac** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (36.9 mg, 44% yield, E/Z = 56/44 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.6 (d, J = 6.6 Hz, 2H), 7.5 (d, J = 8.0 Hz, 2H), 7.3 – 7.3 (m, 5H), 7.2 – 7.2 (m, 2H), 4.2 (q, J = 7.1 Hz, 2H), 3.9 (s, 2H), 3.7 (s, 3H), 1.3 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 167.8, 139.9, 139.2, 137.5, 135.3, 133.4, 130.4, 129.3, 129.2, 128.6, 128.5, 125.2 (q, J = 3.9 Hz), 61.2, 52.1, 26.1, 14.3. ¹⁹F NMR

(376 MHz, Chloroform-*d*) δ -62.56. IR (KBr): 2952, 1713, 1615, 1435, 1368, 1324, 1249, 1165, 1098, 1067, 1016, 860, 765, 607cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₃H₂₂O₄F₃ 419.1470; found 419.1462.

Tetraethyl 4,4'-(1,4-phenylenebis(methaneylylidene))(4*E*,4'*E*)-bis(2-methylenepentanedioate) (3ad)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3ad** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as white solid (64.2 mg, 68% yield, E,E/E,Z = 95/5 as determined by ¹H NMR) Mp: 65.3-68.9 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (s, 2H), 7.34 (s, 4H), 6.30 (s, 2H), 5.49 (s, 2H), 4.26 (q, *J* = 7.1 Hz, 8H), 3.57 (s, 4H), 1.35 – 1.30 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 166.8, 140.7, 138.3, 135.6, 130.1, 129.5, 124.7, 61.2, 61.1, 29.8, 14.3, 14.3. IR (KBr): 2923, 1713, 1275, 1261, 1139, 1026, 764, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₈H₃₅O₈ 499.2332; found 499.2336.

5-ethyl 1-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl) 2-((E)-2,4-dichlorobenzylidene)-4-me thylenepentanedioate (3ae)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3ae** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (47.5mg, 51% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.44 (s, 1H), 7.25 – 7.16 (m, 2H), 6.26 (s, 1H), 5.46 (s, 1H), 4.82 – 4.73 (m, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.44 (q, 2H), 2.10 – 2.01 (m, 1H), 1.93 – 1.82 (m, 1H), 1.74 – 1.65 (m, 2H), 1.56 – 1.40 (m, 2H), 1.33 – 1.28 (m, 3H), 1.13 – 0.99 (m, 2H), 0.93 – 0.87 (m, 7H), 0.78 – 0.74 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.6, 166.6, 138.6, 137.1, 135.2, 135.1, 132.4, 132.4, 130.1, 129.7, 127.2, 124.6, 75.4, 61.1, 47.2, 40.8, 34.3, 31.5, 29.7, 26.4, 23.5, 22.1, 20.8, 16.4, 14.3. IR (KBr): 2956, 2929, 2870, 1714, 1469, 1370, 1275, 1204, 1140, 1093, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₅H₃₃O₄Cl₂ 467.1756; found 467.1750.

5-ethyl 1-(((3a*R*,5*S*,5a*S*,8a*S*,8b*R*)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4 ',5'-d]pyran-5-yl)methyl) 2-((*E*)-2,4-dichlorobenzylidene)-4-methylenepentanedioate (3af)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3af** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (103.0mg, 88%)

yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (s, 1H), 7.44 (d, J = 2.0 Hz, 1H), 7.25 – 7.16 (m, 2H), 6.27 (s, 1H), 5.54 (d, J = 5.0 Hz, 1H), 5.50 (s, 1H), 4.63 (dd, J = 7.9, 2.5 Hz, 1H), 4.42 (dd, J = 11.5, 4.7 Hz, 1H), 4.38 – 4.30 (m, 2H), 4.26 (dd, J = 7.9, 1.9 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 4.13 – 4.04 (m, 1H), 3.42 (s, 2H), 1.50 (s, 3H), 1.47 (s, 3H), 1.34 (d, J = 5.9 Hz, 6H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 166.5, 138.1, 138.0, 135.3, 135.1, 132.2, 131.4, 130.1, 129.7, 127.3, 125.2, 109.7, 108.8, 96.3, 71.1, 70.7, 70.5, 66.1, 64.3, 61.1, 29.8, 26.1, 26.0, 25.1, 24.5, 14.3. IR (KBr): 2988, 2953, 1717, 1275, 1258, 1071, 1008, 751 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₇H₃₃O₉Cl₂ 571.1502; found 571.1505.

1-((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,1 2,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl) 5-ethyl 2-((E)-2,4-dichl orobenzylidene)-4-methylenepentanedioate (3ag)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3ag** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow solid (123.0 mg, 88% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.44 (d, J = 1.9 Hz, 1H), 7.24 – 7.17 (m, 2H), 6.25 (s, 1H), 5.46 (s, 1H), 5.41 – 5.37 (m, 1H), 4.77 – 4.68 (m, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.41 (s, 2H), 2.37 (d, J = 6.7 Hz, 2H), 2.03 – 1.79 (m, 5H), 1.68 – 1.41 (m, 8H), 1.36 – 1.24 (m, 8H), 1.21 – 1.07 (m, 7H), 1.03 (s, 3H), 0.97 (d, J = 5.2 Hz, 1H), 0.92 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 1.9 Hz, 3H), 0.86 (d, J = 1.8 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.6, 166.5, 139.6, 138.6, 137.2, 135.1, 135.0, 132.5, 130.2, 129.6, 127.2, 124.8, 122.9, 75.0, 61.1, 56.8, 56.2, 50.1, 42.4, 39.8, 39.6, 38.1, 37.0, 36.7, 36.3, 35.9, 32.0, 31.9, 29.6, 28.3, 28.1, 27.8, 24.4, 23.9, 22.9, 22.7, 21.1, 19.5, 18.8, 14.3, 11.9. IR (KBr): 2936, 2867, 1716, 1585, 1469, 1275, 1260, 1138, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₄₂H₅₉O₄Cl₂ 697.3790; found 697.3787.

5-ethyl 1-methyl (E)-2-(3,7-dimethyloct-6-en-1-ylidene)-4-methylenepentanedioate (3ah)

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3ah** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (42.6 mg, 66% yield, E/Z > 99/1 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.00 (t, J = 7.5 Hz, 1H), 6.17 (s, 1H), 5.38 (s, 1H), 5.20 – 4.94 (m, 1H), 4.26 – 4.18 (m, 2H), 3.72 (s, 3H), 3.33 (s, 2H), 2.23 – 2.11 (m, 1H), 2.10 – 1.88 (m, 3H), 1.68 (s, 3H), 1.64 (d, J = 5.8 Hz, 1H), 1.59 (s, 3H), 1.40 – 1.34 (m, 1H), 1.33 – 1.29 (m, 3H), 1.19 (q, J = 9.6, 8.8 Hz, 1H), 0.90 (dd, J = 6.7, 3.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.9, 167.1, 145.0, 137.9, 131.6, 129.3, 124.5, 60.9, 51.9, 36.9, 36.0, 32.6, 28.5, 25.8, 25.6, 19.7, 17.8, 14.3. IR (KBr): 2988, 2955, 1718, 1275, 1251, 1137, 1029, 764, 750 cm⁻¹ HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₉H₃₀O₄K 361.1781; found 361.1784.

1-ethyl 5-methyl (E)-2-methylene-4-(4-((trimethylsilyl)ethynyl)benzylidene)pentanedioate (

Following the general procedure, the reaction was conducted at 100 °C in 0.2 mmol scale with **3ai** was isolated by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 10:1) as yellow oil (57.0mg, 77% yield, E/Z = 97/3 as determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 6.28 (s, 1H), 5.47 (s, 1H), 4.25 (q, J = 7.0 Hz, 2H), 3.80 (s, 3H), 3.54 (s, 2H), 1.33 (t, J = 7.2 Hz, 3H), 0.25 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 166.8, 141.2, 138.1, 135.0, 132.2, 129.5, 129.1, 124.7, 123.8, 104.6, 96.2, 61.1, 52.4, 29.9, 14.3, 0.0. IR (KBr): 2956, 2157, 1716, 1436, 1275, 1206, 1137, 750 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₁H₂₇O₄Si 371.1679; found 371.1674.

1-ethyl 5-methyl (E)-4-(4-ethynylbenzylidene)-2-methylenepentanedioate (4)

The 3**ai** (0.3 mmol) was dissolved in anhydrous THF (3 mL) in a 10 mL Schlenk flask. Then, H₂O (10.0 mmol, 40 equiv.) and TBAF (0.6 mmol, 1 M in THF) were added into the solution slowly at 0 °C (low temperature magnetic stirrer, with ethylene glycol bath), and the mixture was stirred for 5 h. The reaction mixture was poured into water (5 mL) and extracted with EtOAc (10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product. The product 4 was isolated from the crude mixture by PTLC (Petroleum ether (bp: 60-90 °C)/ethyl acetate = 15:1) as white solid (78.1 mg, 87% yield). Mp: 36.7-39.5 °C ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 6.29 (s, 1H), 5.48 (s, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 3.80 (s, 3H), 3.55 (s, 2H), 3.18 (s, 1H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 166.7, 141.0, 138.1, 135.4, 132.4, 129.7, 129.1, 124.7, 122.8, 83.2, 78.9, 61.1, 52.4, 29.9, 14.3. IR (KBr): 3291, 2985, 2952, 1715, 1585, 1275, 1206, 1138, 764, 750 cm⁻¹. HRMS (ESI) m/z: [M + K]⁺ Calcd. for: C₁₈H₁₈O₄K 337.0842; found 337.0836.

1-ethyl 5-methyl 4-((*E*)-4-(1-((2*R*,3*R*,5*S*)-5-(hydroxymethyl)-2-(5-methyl-2,4-dioxo-3,4-dihyd ropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-5-yl)benzylidene)-2-methylenep entanedioate (5)

Under argon atmosphere, a flame-dried 10 mL schlenk tube was charged with compound 4 (0.16 mmol, 1.0 equiv.), zidovudine (0.18 mmol, 1.1 equiv.), 'BuOH (1.5 mL) and a stir bar was added a freshly prepared solution of $CuSO_4$ ·5H₂O (0.1 equiv.) and sodium ascorbate (0.2 equiv.) in H₂O (1 mL). the resulting solution was stirred at room temperature for 20 h. The reaction mixture was concentrated and subjected to PTLC (ethanol/ dichloromethane = 1:20) to give 5 as a white solid (147 mg, 85% yield).

Mp: 66.1-67.5 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.15 (s, 1H), 8.13 (s, 1H), 7.89 (s, 1H), 7.80 (d, J = 7.9 Hz, 2H), 7.58 (s, 1H), 7.36 (d, J = 7.7 Hz, 2H), 6.33 (s, 1H), 6.28 (s, 1H), 5.56 (s, 1H), 5.49 (s, 1H), 4.48 (s, 1H), 4.35 (s, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.04 (d, J = 11.3 Hz, 1H), 3.93 – 3.84 (m, 1H), 3.80 (s, 3H), 3.56 (s, 2H), 3.09 – 2.87 (m, 2H), 1.82 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.3, 167.0, 164.6, 150.9, 147.2, 141.3, 138.1, 137.6, 134.9, 130.7, 129.9, 129.0, 125.9, 124.8, 120.7, 111.1, 87.2, 85.2, 61.4, 61.2, 59.6, 52.4, 37.9, 29.9, 14.3, 12.5. IR (KBr): 2929, 1706, 1436, 1371, 1275, 1223, 1095, 766 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd. for: C₂₈H₃₂O₈N₅ 566.2251; found 566.2247.

5. References

(1) B. Li, W. Zeng, L. Wang, Z. Geng, T.-P. Loh, P. Xie, Visible-Light-Induced Trifluoromethylation of Allylic Alcohols, *Org. Lett.* **2021**, 23, 13, 5235–5240.

(2) P. Xie, W. Fu, X. Cai, Z. Sun, Y. Wu, S. Li, C. Gao, X. Yang, T-P. Loh, A Ba/Pd Catalytic System Enables Dehydrative Cross-Coupling andExcellentE-Selective Wittig Reactions, *Org. Lett.* **2019**, 21, 17, 7055–7059.

5. NMR Spectra for New Compounds

Figure S2 | ¹³C NMR (101 MHz, Chloroform-d) spectra for compound 3a

Figure S4 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3b

Figure S6 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3c

Figure S8 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3d

Figure S9 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3e

Figure S10 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3e

Figure S12 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3f

Figure S14 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3g

Figure S16 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3h

Figure S18 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3i

Figure S20 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3j

Figure S22 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3k

Figure S24 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 31

Figure S26 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3m

Figure S28 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3n

Figure S30 | ¹⁹F NMR (376 MHz, Chloroform-*d*) spectra for compound 3n

Figure S31 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 30

Figure S32 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 30

Figure S33 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3p

Figure S34 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3p

Figure S36 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3q

Figure S37 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3r

Figure S38 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3r

Figure S40 | ¹³C NMR (101 MHz, Chloroform-d) spectra for compound 3s

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(f1 (ppm)

Figure S42 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3t

Figure S44 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3u

Figure S46 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3v

$\begin{array}{c} 6.99 \\ 6.97 \\ 6.96 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 6.17 \\ 5.40 \\ 5.40 \\ 5.40 \\ 5.33 \\ 5.33 \\ 5.33 \\ 5.33 \\ 5.33 \\ 5.33 \\ 7.21 \\ 7.21 \\ 1.42 \\ 1.42 \\ 1.42 \\ 1.42 \\ 1.42 \\ 1.42 \\ 1.13 \\ 1.50 \\ 1.13 \\ 1$

Figure S48 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3w

Figure S50 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3x

-0.00

Figure S51 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3y

Figure S52 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3y

Figure S53 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3z

Figure S54 | 13 C NMR (101 MHz, Chloroform-d) spectra for compound 3z

Figure S56 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3aa

$\begin{array}{c} 8.81\\ 8.81\\ 8.81\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 8.82\\ 7.55\\ 7.75\\ 8.82\\ 7.75\\$

Figure S57 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3ab

Figure S58 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3ab

Figure S60 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 3ac

Figure S62 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3ad

Figure S63 | ¹³C NMR (101 MHz, Chloroform-d) spectra for compound 3ad

$\begin{array}{c} 7.7.88\\ 7.7.21\\ 7.7.22\\$

Figure S64 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3ae

Figure S65 | ¹³C NMR (101 MHz, Chloroform-d) spectra for compound 3ae

Figure S66 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3af

Figure S67 | ¹³C NMR (101 MHz, Chloroform-d) spectra for compound 3af

$\begin{array}{c} 7.78\\ 7.74\\ 7.72\\$

Figure S68 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3ag

Figure S69 | ¹³C NMR (101 MHz, Chloroform-d) spectra for compound 3ag

$\begin{array}{c} 7.02\\ 6.617\\ 8.5.38\\ 8.5.36\\ 6.617\\ 8.5.36\\ 8.5$

Figure S70 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3ah

Figure S72 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 3ai

Figure S74 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 4

Figure S76 | ¹H NMR (400 MHz, Chloroform-d) spectra for compound 5

Figure S77 | ¹³C NMR (101 MHz, Chloroform-*d*) spectra for compound 5

6. X-ray Data Collection and Structure Determinations

Single crystals of **3ad** were grown by slow diffusion of *n*-hexane into EtOAc solution. X-ray singlecrystal diffraction data was collected on a Rigaku XtaLAB P200 diffractometer at 296(2) K with MoK α radiation (λ =0.71073 Å) in the ω scan mode. The program SAINT was used for integration of the diffraction profiles. All of the structures were solved using direct methods using the SHELXS program of the SHELXTL package and refined using full matrix least-squares methods with SHELXL (semi empirical absorption corrections were applied using the SADABS program). Other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on *F*2. The hydrogen atoms were generated theoretically onto the specific atoms and refined isotopically with fixed thermal factors. Detailed crystallographic data were summarized (**Table S4**).

	3ad	
Chemical formula	$C_{28}H_{34}O_8$	
Formula weight	498.55	
Crystal system	monoclinic	
Space group	P -1	
<i>a</i> (Å)	5.4044(3)	
<i>b</i> (Å)	14.2246(7)	
<i>c</i> (Å)	17.7580(8)	
$V(Å^3)$	1319.95(12)	
α (°)	79.753(2)	
β (°)	81.874(2)	
γ (°)	81.718(2)	
Ζ	2	
F(000)	532.0	
GOF	1.075	
$D/g \text{ cm}^{-3}$	1.254	
μ (mm ⁻¹)	0.753	
T/K	193	
ЛМоК\a (Å)	1.54718	
R^a/R^b	0.0400(4423)/0.1133(4815)	
${}^{a}R = \sum F_{o} - F_{c} / \sum F_{o} . {}^{b}R_{w} = \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum w(Fo^{2})^{2}]^{1/2}$		

Table S4. Crystal Date and Structure Refinements for 3ad.

X-ray Crystal Structures (30% thermal ellipsoid probability levels) 3ad.

CCDC-**2255280** (**3ad**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>https://www.ccdc.cam.ac.uk/structures/Search?ccdc=2255280.</u>