Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

## Nonlinear optical-active ferrocene conjugated Y-shaped imidazole donor- $\pi$ acceptor [(D- $\pi$ )<sub>2</sub>-IM- $\pi$ -A] compounds for dye-sensitized solar cells using non-corrosive copper complexes as a redox mediator

Selvam Prabu,<sup>a</sup> Francesco Fagnani,<sup>b</sup>\* Alessia Colombo,<sup>b</sup> Claudia Dragonetti,<sup>b</sup> Paolo Biagini,<sup>c</sup> Fabio Melchiorre,<sup>c</sup> Nallasamy Palanisami<sup>a</sup>\*

<sup>a</sup> Centre for Functional Materials, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.

<sup>b</sup> Department of Chemistry, University of Milan and UdR-INSTM, Via C. Golgi 19, I-20133 Milan, Italy

<sup>c</sup> Renewable, new Energies and Material Science Research Centre, Istituto Guido Donegani, Eni S.p.A., via G. Fauser, 4 I-28100 Novara, Italy

Corresponding authors: E-mail: palanisami.n@gmail.com, palanisami.n@vit.ac.in, francesco.fagnani@unimi.it



Figure S2. <sup>13</sup>C NMR spectrum of compound 1 in CDCl<sub>3</sub> at 25 °C.



**Figure S4.** <sup>13</sup>C NMR spectrum of compound **2** in CDCl<sub>3</sub> at 25 °C.



Figure S5. FT-IR spectra for compounds 1 and 2.



Figure S6. ESI-Mass spectrum of compound 1.





Figure S8. Absorption spectra of compounds 1 and 2 in CH<sub>2</sub>Cl<sub>2</sub> solution using different concentrations.



**Figure S9.** The optimized geometries of compounds **1** and **2** obtained at B3LYP/6-31+G\*\* level of theory



Figure S10. Theoretically calculated absorption spectra for compounds 1 and 2. The absorption spectra were obtained by TD-DFT (dichloromethane solvent) with B3LYP/6-31+G\*\* level of theory.



Figure S11. The energy level diagram of compound 2 including the conduction band of  $TiO_2$  and redox couples.

| Table S1.    | Selected | transitions | obtained | from | TD-DFT | calculation | with | B3LYP/6-31+G** |
|--------------|----------|-------------|----------|------|--------|-------------|------|----------------|
| level theory | у        |             |          |      |        |             |      |                |

| Entry   | λ           | Oscillator  | Energy | Selected Major Transitions <sup>a</sup>                  |
|---------|-------------|-------------|--------|----------------------------------------------------------|
|         | <b>(nm)</b> | strength, f | (eV)   |                                                          |
|         | 408         | 0.3995      | 3.33   | $H \to L+1 (40\%)$                                       |
|         | 447         | 0.3425      | 2.76   | $H \rightarrow L (91\%)$                                 |
|         | 386         | 0.2822      | 3.20   | $H \rightarrow L+1 (38\%)$                               |
| 1       | 388         | 0.0394      | 3.18   | $H-2 \rightarrow L (52\%)$                               |
| (ester) | 571         | 0.0263      | 2.16   | $H-3 \rightarrow L+4 \ (16\%)$                           |
|         | 375         | 0.0254      | 3.30   | $H-1 \rightarrow L+1 (27\%), H-6 \rightarrow L+6 (16\%)$ |
|         | 495         | 0.0214      | 2.50   | $H-6 \rightarrow L+3 (12\%)$                             |
|         | 354         | 0.0198      | 3.49   | $H-4 \rightarrow L (52\%)$                               |
|         | 390         | 0.5224      | 3.17   | $H \to L+1 (36\%),$                                      |
|         | 395         | 0.3520      | 3.13   | $H \to L+1 (36\%)$                                       |
|         | 483         | 0.3041      | 2.56   | $H \rightarrow L (73\%)$                                 |
|         | 379         | 0.1616      | 3.26   | $H-2 \rightarrow L+5 (17\%), H-1 \rightarrow L+1 (17\%)$ |
| 2       | 371         | 0.1132      | 3.33   | $H-4 \rightarrow L (21\%), H-3 \rightarrow L+4 (14\%)$   |
| (acid)  | 499         | 0.1073      | 2.48   | $H-5 \rightarrow L+4 (33\%), H \rightarrow L (19\%)$     |
|         | 409         | 0.0337      | 3.02   | $H-1 \rightarrow L (90\%)$                               |
|         | 377         | 0.0211      | 3.28   | $H-2 \rightarrow L+1 (31\%)$                             |
|         | 495         | 0.0181      | 2.50   | $H-2 \to L+5 (32\%)$                                     |
|         | 344         | 0.0134      | 3.59   | $H-1 \rightarrow L+1 (46\%), H \rightarrow L+3 (18\%)$   |

<sup>a</sup> H = HOMO; L = LUMO; only contributions above 10% are included.

**Table S2**. Density surfaces of the frontier orbitals involved in electronic transitions of compounds **1** and **2** which is derived from B3LYP/6-31+G\*\* level of theory using isosurface value of 0.02 au.







| Dye                                          | Jsc                   | Voc    | FF    | η (%)  | Redox                            | Ref  |
|----------------------------------------------|-----------------------|--------|-------|--------|----------------------------------|------|
| l l                                          | (mAcm <sup>-2</sup> ) | (V)    |       | • ` ´  | mediator                         |      |
| Fc-dithiocarbamates 1                        | 5.72                  | -0.74  | 0.74  | 3.14   |                                  |      |
| 2                                            | 5.09                  | -0.74  | 0.74  | 2.80   |                                  |      |
| 3                                            | 4.74                  | -0.74  | 0.73  | 2.59   |                                  |      |
| 4                                            | 7.14                  | -0.74  | 0.73  | 3.87   |                                  |      |
| 5                                            | 6.41                  | -0.74  | 0.72  | 3.46   |                                  |      |
| 6                                            | 6.83                  | -0.74  | 0.73  | 3.69   | $I^{-}/I_{3}^{-}$                | 1    |
| Fc-triphenylamine D1                         | 8.13                  | 0.66   | 0.68  | 3.65   |                                  |      |
| D2                                           | 9.84                  | 0.72   | 0.70  | 4.96   | $I^{-}/I_{3}^{-}$                | 2    |
| Fc-diketopyrrolopyrrole                      |                       |        |       |        |                                  |      |
| P:SM1                                        | 11.34                 | 0.98   | 0.58  | 6.44   |                                  |      |
| P:SM2                                        | 12.66                 | 0.88   | 0.62  | 6.89   | $I^{-}/I_{3}^{-}$                | 3    |
| Fc-benzimidazole NO <sub>2</sub>             | 9.75                  | -0.628 | 0.61  | 3.71   |                                  |      |
| СООН                                         | 12.74.                | -0.648 | 0.70  | 5.81   | $I^{-}/I_{3}^{-}$                | 4    |
| Fc-diketenone                                | 2.56                  | -0.552 | 0.57  | 0.81   |                                  |      |
| Fc-Quinoxaline                               | 3.57                  | -0.576 | 0.59  | 1.22   |                                  |      |
| Fc-Quinoxaline-Cl                            | 5.14                  | -0.630 | 0.61  | 1.97   |                                  |      |
| Fc-Quinoxaline-NO2                           | 7.38                  | -0.642 | 0.71  | 3.38   |                                  |      |
| Fc-Quinoxaline-COOH                          | 9.14                  | -0.646 | 0.71  | 4.42   | I <sup>-</sup> /I <sub>3</sub> - | 5    |
| Fc-D1 (AN-50)                                | 0.730                 | 0.407  | 0.584 | 0.180  |                                  |      |
| Fc-D1 (Hybrid)                               | 0.610                 | 0.405  | 0.612 | 0.160  |                                  |      |
| Fc-D2 (AN-50)                                | 0.590                 | 0.337  | 0.579 | 0.115  |                                  |      |
| Fc-D2 (Hybrid)                               | 0.380                 | 0.770  | 0.603 | 0.190  |                                  |      |
| Fc-D3 (AN-50)                                | 1.070                 | 0.434  | 0.575 | 0.270  |                                  |      |
| Fc-D3 (Hybrid)                               | 1.190                 | 0.494  | 0.541 | 0.325  | $I^-/I_3^-$                      | 6    |
| Ferrocenyl cyanoviny 1                       | 0.41                  | 0.763  | 35    | 0.10   |                                  |      |
| 2                                            | 0.039                 | 0.841  | 28    | 0.009  | $I^{-}/I_{3}^{-}$                | 7    |
| Ferrocenyl azine Fc-OH                       | 12.91                 | 0.710  | 0.64  | 5.88   |                                  |      |
| Fc-NO <sub>2</sub>                           | 9.21                  | 0.690  | 0.63  | 4.04   | $I^-/I_3^-$                      | 8    |
| FcCH=NC <sub>6</sub> H <sub>4</sub> COOH (1) | 8.28                  | -0.648 | 0.71  | 0.81   |                                  |      |
| FcCH=NCH <sub>2</sub> CH <sub>2</sub> OH (2) | 7.24                  | -0.660 | 0.67  | 0.68   |                                  |      |
| Fc-CHO (3)                                   | 7.60                  | -0.640 | 0.71  | 0.73   | $I^-/I_3^-$                      | 9    |
| Fc-Multi donor systems                       |                       |        |       |        | -                                |      |
| Dye 1                                        | 0.025                 | 0.211  | 0.318 | 0.0017 |                                  |      |
| Dye 2                                        | 0.049                 | 0.282  | 0.347 | 0.0047 |                                  |      |
| Dye 1 + CDCA                                 | 0.071                 | 0.388  | 0.452 | 0.012  |                                  |      |
| Dye 2 + CDCA                                 | 0.086                 | 0.428  | 0.432 | 0.015  | $I^{-}/I_{3}^{-}$                | 10   |
| Fc-modified zinc                             |                       |        |       |        |                                  |      |
| phthalocyanine                               | 0.014                 | 45     | 0.48  | 0.003  | $I^{-}/I_{3}^{-}$                | 11   |
| Fc-chalcones Fc1                             | 0.606                 | 0.593  | 58.70 | 0.211  |                                  | -    |
| Fc2                                          | 0.776                 | 0.601  | 52.70 | 0.246  | $I^{-}/I_{3}^{-}$                | 12   |
| Ferrocene appended                           |                       |        |       | -      |                                  |      |
| porphyrin F3P                                | 0.068                 | 0.283  | 0.42  | 0.008  | Co(II)/Co(III)                   | 13   |
|                                              | 1.51                  | 0.40   | 42.7  | 0.26   | I'/I <sub>3</sub>                |      |
| Y-shaped imidazole acid                      | 1.18                  | 0.41   | 39.1  | 0.19   | Cu(I)/Cu(II)                     | This |
| (compound <b>2</b> )                         | 0.95                  | 0.40   | 40.6  | 0.16   | Cu(I)/Cu(II)                     | work |

 Table S3. DSSC performance of some previously reported ferrocene (Fc) based sensitizers

## References

- V. Singh, R. Chauhan, A. N. Gupta, V. Kumar, M. G. Drew, L. Bahadur and N. Singh, Photosensitizing activity of ferrocenyl bearing Ni (II) and Cu (II) dithiocarbamates in dye sensitized TiO2 solar cells, *Dalton Trans.*, 2014, 43(12), 4752-4761.
- 2. R. Misra, R. Maragani, K. R. Patel and G. D. Sharma, Synthesis, optical and electrochemical properties of new ferrocenyl substituted triphenylamine based donor–acceptor dyes for dye sensitized solar cells, *RSC Adv.*, 2014, **4**(66), 34904-34911.
- Y. Patil, R. Misra, R. Singhal and G. D. Sharma, Ferrocene-diketopyrrolopyrrole based non-fullerene acceptors for bulk heterojunction polymer solar cells, *J. Mater. Chem. A*, 2017, 5(26), 13625-13633.
- R. Yadav, A. Singh, G. Kociok-Köhn, R. Chauhan, A. Kumar and S. Gosavi, Ferrocenyl benzimidazole with carboxylic and nitro anchors as potential sensitizers in dyesensitized solar cells, *New J. Chem.*, 2017, 41(15), 7312-7321.
- R. Chauhan, M. Shahid, M. Trivedi, D. P. Amalnerkar and A. Kumar, Dye-Sensitized Solar Cells with Biferrocenyl Antennae Having Quinoxaline Spacers, *Eur. J. Inorg. Chem.*, 2015, 22, 3700-3707.
- 6. M. Cariello, S. Ahn, K. W. Park, S. K. Chang, J. Hong and G. Cooke, An investigation of the role increasing  $\pi$ -conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based dyes, *RSC Adv.*, 2016, **6**(11), 9132-9138.
- A. Ghosh, S. Mishra, S. Giri, S. M. Mobin, A. Bera and S. Chatterjee, Electrolyte-free dye-sensitized solar cell with high open circuit voltage using a bifunctional ferrocenebased cyanovinyl molecule as dye and redox couple, *Organometallics*, 2018, 37(13), 1999-2002.
- A. Singh, G. Kociok-Köhn, R. Chauhan, M. Muddassir, S. W. Gosavi and A. Kumar, 2022. Ferrocene Appended Asymmetric Sensitizers with Azine Spacers with phenolic/nitro anchors for Dye-Sensitized Solar Cells, *J. Mol. Struct.*, 2022, **1249**, 131630.
- 9. R. Chauhan, M. Trivedi, L. Bahadur and A. Kumar, Application of  $\pi$ -extended ferrocene with varied anchoring groups as photosensitizers in TiO2-based dye-sensitized solar cells (DSSCs), *Chem. Asian J.*, 2011, **6**(6), 1525-1532.

- S. Prabu, T. Viswanathan, E. David, S. Jagadeeswari and N. Palanisami, Enhancement of photovoltaic performance in ferrocenyl π-extended multi donor-π-acceptor (D-D'-π-A) dyes using chenodeoxycholic acid as a dye co-adsorbent for dye sensitized solar cells, *RSC Adv.*, 2023,13, 9761-9772.
- M. S. An, S. W. Kim and J. D. Hong, Synthesis and characterization of peripherally ferrocene-modified zinc phthalocyanine for dye-sensitized solar cell, *Bull. Korean Chem. Soc.*, 2010, 31(11), 3272-3278.
- A. H. Anizaim, D. A. Zainuri, M. F. Zaini, I. A. Razak, H. Bakhtiar and S. Arshad, Comparative analyses of new donor-π-acceptor ferrocenyl-chalcones containing fluoro and methoxy-fluoro acceptor units as synthesized dyes for organic solar cell material, *PLoS One*, 2020, **15**(11), e0241113.
- D. Sirbu, C. Turta, A. C. Benniston, F. Abou-Chahine, H. Lemmetyinen, N. V. Tkachenko, C. Wood and E. Gibson, Synthesis and properties of a meso-tris–ferrocene appended zinc (II) porphyrin and a critical evaluation of its dye sensitised solar cell (DSSC) performance, *RSC Adv.*, 2014, 4(43), 22733-22742.