Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

1,2,3-Triazole-ContainingFlex-Nucleoside Analogs and Sulfonamido-Ribofuranoside Conjugates: Design, Synthesis, and Antiproliferative Potential

Dijana Pavlović Saftić,^{*,[a]} Željka Ban,^[a] Katarina Mišković Špoljarić,^[b] Ljubica Glavaš-Obrovac,^{*,[b]} and Biserka Žinić^{*,[a]}

^aLaboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia. ^bDepartment of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia.

Email: Dijana.Pavlovic.Saftic@irb.hr; lgobrovac@mefos.hr; bzinic@irb.hr

Content	Page
¹ H NMR and ¹³ C NMR spectra for Flex-Nucleoside Analogs	
C5-[1,2,3]triazolyl-uridines 7–12	S2–S7
C5-[1,2,3]triazolyl-uracils 13, 14	S8–S9
uracil-[1,2,3]triazole-ribofuranosides 16–18	S10–S12
uridine-[1,2,3]triazole-ribofuranosides 19, 20	S13–S14
¹ H NMR and ¹³ C NMR spectra for Ribofuranoside Conjugates	
1,2,3-triazolyl-ribofuranoside conjugates 23–25	S15–S17
1,2,3-triazolyl-sulfonamido-ribofuranoside conjugates 26–28	S18–S20
5-azido-ribosyl-sulfonamides 31–33	S21–S23
Table S1. Sensitivity of human tumor and normal cells to C5–[1,2,3]triazolyl-	
-flex-nucleoside analogs (7–14, 16–20) expressed as IC_{50} value and	
SI tumor selectivity index	S24
Table S2. Sensitivity of human tumor and normal cells to investigated	
ribofuranoside conjugates (23–28), and 5-azido-ribosyl-sulfonamides (31–33)	
expressed as IC_{50} value and SI tumor selectivity index	S25

compound 7.

compound **8**.

Figure S3. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **9**.

Figure S4. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **10**.

Figure S5. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **11**.

Figure S6. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **12**.

Figure S7. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **13**.

Figure S8. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **14**.

Figure S9. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **16**.

Figure S10. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **17**.

Figure S11. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **18**.

Figure S12. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **19**.

Figure S13. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR spectra (75 MHz, APT, DMSO- d_6) of compound **20**.

Figure S14. ¹H NMR (600 MHz, DMSO- d_6) and ¹³C NMR (151 MHz, APT, DMSO- d_6) spectra of compound **23**.

Figure S15. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR (75 MHz, APT, DMSO- d_6) spectra of compound **24**.

Figure 16. ¹H NMR (600 MHz, DMSO- d_6) and ¹³C NMR (75 MHz, APT, DMSO- d_6) spectra of compound **25**.

Figure S17. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR (151 MHz, APT, DMSO- d_6) spectra of compound **26**.

Figure S18. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR (75 MHz, APT, DMSO- d_6) spectra of compound **27**.

Figure S19. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR (151 MHz, APT, DMSO- d_6) spectra of compound **28**.

Figure S20. ¹H NMR (600 MHz, DMSO- d_6) and ¹³C NMR (151 MHz, APT, DMSO- d_6) spectra of compound **31**.

Figure S21. ¹H NMR (600 MHz, DMSO- d_6) and ¹³C NMR (151 MHz, APT, DMSO- d_6) spectra of compound **32**.

Figure S22. ¹H NMR (300 MHz, DMSO- d_6) and ¹³C NMR (75 MHz, APT, DMSO- d_6) spectra of compound **33**.

						ICI ₅₀ /μM							
			SI		SI		SI		SI		SI		SI
Comp.	MDCK	HeLa		Caco-2		NCI-H358		Raji		K562		HuT-78	
7	>100	>100	-	>100	-	>100	-	>100	-	>100	-	71.8 ±4.3	1.4
8	>100	>100	-	>100	-	>100	-	>100	-	>100	-	56.8 ±2.1	1.8
9	>100	>100	-	>100	-	>100	-	>100	-	>100	-	67.2 ±14.1	1,5
10	>100	>100	-	>100	-	>100	-	>100	-	>100	-	57.3 ±5.8	1.8
11	>100	>100	-	>100	-	>100	-	100	-	94.3±12.0	-	63.7 ±10.2	1.6
12	>100	>100	-	>100	-	>100	-	7.8± 4.6	12.8	4.0 ±0.6	25.0	14.3 ±5.6	7.0
13	>100	>100	-	>100	-	>100	-	>100	-	>100	-	17.4 ±5.8	5.8
14	>100	>100	-	>100	-	>100	-	64.5 ±8.1	1.6	15.9 ±5.3	6.3	< 100	-
16	>100	>100	-	>100	-	>100	-	>100	-	>100	-	72.6 ±9.2	1.4
17	>100	>100	-	>100	-	>100	-	>100	-	97.5± 15.5	-	90.6 ±16.1	1.1
18	> 100	>100	-	6.7±1.0	-	> 100	-	> 100	-	61.3 ±11.8	1.6	> 100	-
19	>100	>100	-	>100	-	>100	-	> 100	-	> 100	-	70.5 ±5.2	1.3
20	>100	>100	-	>100	-	>100	-	> 100	-	> 100	-	71.8 ±1.6	1.4
5-FU	55±.8.7	8.2±1.9	6.7	5.9±0.7	9.3	≥50	-	> 100	-	9.8±1.1	5.6	> 100	-

Table S1 Sensitivity of human tumor and normal cells to C5–[1,2,3]triazolyl-flex-nucleoside analogs(7–14, 16–20) expressed as IC50ª value and SI tumor selectivity indeks

 ${}^{a}IC_{50}$ – Compound concentration that inhibited cell growth by 50 %. Data represents mean IC₅₀ (μ M) values ± standard deviation (SD) of three independent experiments. Exponentially growing cells were treated with compounds during 72 h. Cytotoxicity was analyzed using MTT survival assay. **5-FU**: 5-Fluorouracil.

						IC₅₀/μM							
			SI		SI		SI		SI		SI		SI
Comp.	MDCK	HeLa		Caco-2		NCI-H358		Raji		K562		HuT-78	
23	>100	>100	-	>100	-	>100	-	>100	-	>100	-	76.4 ±12.1	1.3
24	5.7 ±1.1	11.6 ±1.3	-	13.3 ±3.7	-	13.4 ±6.4	-	15.4 ±1.1	-	15.7 ±1.3	-	4.8 ±2.8	-
25	>100	>100	-	>100	-	>100	-	>100	-	>100	-	>100	-
26	> 100	71.9 ±11.1	-	80.6 ±4.2	-	> 100	-	34.5 ±0.1	2.9	2.4 ±0.0	41.7	6.2 ±2.6	16.3
27	86.1 ±8.7	>100	-	>100	-	25.2±0.2	-	12.5 ±2.6	8.6	10.11 ±1.8	9.9	40.5 ±6.8	2.5
28	>100	>100	-	>100	-	>100	-	-	-	>100		76.2 ±0.9	1.3
31	>100	>100	-	>100	-	>100	-	76.9 ±3.2	1.3	47.2 ±27.3	2.1	57.4 ±8.8	1.7
32	>100	>100	-	>100	-	>100	-	>100		52.7 ±18.2	-	93.9 ±16.0	-
33	>100	>100	-	>100	-	>100	-	10.6 ±0.1	9.4	4.9 ±1.7	20.4	8.9 ±1.3	11.2
5-FU	55±.8.7	8.2±1.9	6.7	5.9±0.7	9.3	≥50	-	>100	-	9.8±1.1	5.6	>100	-

Table 2. Sensitivity of human tumor and normal cells to investigated ribofuranoside conjugates (23–28), and 5-azido-ribosyl-sulfonamides (31–33) expressed as IC_{50}^{a} value and SI tumor selectivity index.

^aIC₅₀ – Compound concentration that inhibited cell growth by 50 %. Data represents mean IC₅₀ (µM) values ± standard deviation (SD) of three independent experiments. Exponentially growing cells were treated with compounds during 72 h. Cytotoxicity was analyzed using MTT survival assay. "– " not analysed; **5-FU**: 5-Fluorouracil.