Supplementary Material

Discovering potential inhibitors of YEATS domain of YEATS2 through virtual screening, molecular optimization and molecular dynamics simulation

Xiaoyan Wang ${ }^{1}$, Guang hui Cheng ${ }^{2}$, Jingjie Zhao ${ }^{3}$, Ping Gao ${ }^{4}$, Haiting Mao ${ }^{3}$, Chao Yuan ${ }^{3 *}$, Jian Zhang ${ }^{2 *}$
${ }^{1}$ Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, People's Republic of China
${ }^{2}$ Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033 Jinan, Shandong, People's Republic of China
${ }^{3}$ Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033 Jinan, Shandong, People's Republic of China
${ }^{4}$ Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
*Corresponding author: Chao Yuan, 247 Beiyuan Street, 250033 Jinan, Shandong, People’s Republic of China

Email: cyuan_1987@163.com

Jian Zhang, 247 Beiyuan Street, 250033 Jinan, Shandong, People’s Republic of China

Email: 469205425@qq.com

Table of Contents

I. Molecules with high affinity and appropriate binding position to the YEATS2 YEATS domain in ZINC Natural Products, Enamine Advanced and Enamine HTS.
II. All small molecules (657 compounds) obtained by three rounds of molecular optimization.
III. The structure and docking parameters of selected molecular from molecular optimization.
IV. Figures of molecular dynamics simulation studies
I. Molecules with high affinity and appropriate binding position to the YEATS2 YEATS domain in ZINC Natural Products, Enamine Advanced and Enamine HTS.

Table S1. Molecules with high affinity and appropriate binding position to the YEATS2 YEATS domain in ZINC Natural Products.

| ZINC Natural Products (127695 Compounds, 2016 October 1) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | Compound | Affinity (kcal/mol) | |

2INC20503705
ZINC8589186

Table S2. Molecules with high affinity and appropriate binding position to the YEATS2 YEATS domain in Enamine Advanced.

Enamine Advanced (448388 compounds, 2020 May)			
NO.	Compound	Affinity (kcal/mol)	Structure
1	Z2118684250	-9.1	
2	Z2098109826	-9.0	
3	Z1148211073	-8.9	
4	Z1919888977	-8.9	
5	Z1323896259	-8.8	
6	Z2958154393	-8.8	
7	Z3021380753	-8.8	

(30711050398
(2)
23
31 (203862968
39

Table S3. Molecules with high affinity and appropriate binding position to the YEATS2 YEATS domain in Enamine HTS.

Enamine HTS (1756280 compounds, 2020 May)			
NO.	Compound	Affinity (kcal/mol)	Structure
1	Z44612196	-9.7	
2	Z927561814	-9.5	
3	Z255749124	-9.2	

4
(20902054
2928673756
26 (2280678030
33 Z 1257219130 Cl
40
II. All small molecules (657 compounds) obtained by three rounds of molecular optimization.

Table S4. The small molecules (288 compounds) obtained by the first round of molecular optimization.

No.	Structure	No.	Structure

cols)

cols)
cols)

75		76	
77		78	
79		80	
81		82	
83		84	
85		86	
87		88	
89		90	
91		92	
93		94	

95		96	
97		98	
99		100	
101		102	
103		104	
105		106	
107		108	
109		110	

125

127		128	
129		130	
131		132	
133		134	
135		136	
137		138	
139		140	
141		142	
143		144	
145		146	

cols)
cols)
cosers)

cols)
cols

249		250	
251		252	
253		254	
255		256	
257		258	
259		260	

261		262	
263		264	
265		266	
267		268	
269		270	
271		272	

273		274	
275		276	
277		278	
279		280	
281		282	
283		284	

285		286	
287		288	

Table S5. The small molecules (228 compounds) obtained by the second round of molecular optimization.
cosers)

13		14	
15		16	
17		18	
19		20	
21		22	
23		24	
25		26	
27		28	
29		30	

31		32	
33		34	
35		36	
37		38	
39		40	
41		42	
43		44	
45		46	
47		48	
49		50	

${ }^{*}$	aution	\%	auraya
S	a 0 trato	12	asiob
${ }^{18}$	a, vit	${ }^{4}$	aotia
${ }^{18}$	andich	wo	\checkmark \%
${ }^{\prime \prime}$	s-3ts	w	
${ }^{\circ}$	$b^{2-2 y}$	${ }^{10}$	s artas
${ }^{\text {un }}$	sortig	10	Sobaror
${ }^{10}$	50harat	"	509x
${ }^{*}$		w	-ovipur
\%	00^{2018}	\%	

169		170	
171		172	
173		174	
175		176	
177		178	
179		180	
181		182	
183		184	
185		186	
187		188	

${ }^{189}$		${ }^{190}$	
191		${ }^{19}$	
${ }^{193}$		${ }^{194}$	$3^{4} \mathrm{cos} 0^{\text {x, }}$
195	motyong	${ }^{196}$	H0\%orior
${ }^{197}$	and wion	${ }^{198}$	$5^{40-2} a^{2}$
${ }^{19}$	$0^{200-2} a_{0}$	200	$0_{0}^{200} 0^{2}$
201	$\cos ^{4} \sin ^{2}$	202	motion
213	sosotion	${ }^{204}$	yngtas
205	ingriabe	${ }^{206}$	$x^{2} x^{2}+x^{2}$
207	$a^{2-x} x^{n}$	${ }^{218}$	$2-x^{\circ} x^{2} n^{4}$

223

Table S6. The small molecules (141 compounds) obtained by the third round of molecular optimization.
cosers)

19		20	
21		22	
23		24	
25		26	
27		28	
29		30	
31		32	
33		34	
35		36	
37		38	

39		40	
41		42	
43		44	
45		46	
47		48	
49		50	
51		52	
53		54	
55		56	
57		58	

cols)

79		80	
81		82	
83		84	
85		86	
87		88	
89		90	
91		92	
93		94	
95		96	

10

117		118	
119		120	
121		122	
123		124	
125		126	
127		128	
129		130	
131		132	
133		134	

coses)

III. The structure and docking parameters of selected molecular from molecular optimization

Table S7. The structure and docking parameters of selected molecular from the first round of molecular optimization

No.	Structure	Total score	Crash	Polar
1				
2		23.2464	-2.3488	3.8897

3		19.7138	-2.5142	4.1784
4		20.5698	-2.1063	4.0624
5		20.6115	-2.2196	4.2344

Table S8. The structure and docking parameters of selected molecular from the second round of molecular optimization

No.	Structure	Total score	Crash	Polar
1		22.1532	-2.3824	4.3589
2		22.7328	-3.3721	4.1669
3		22.5528	-2.5012	4.0969

4		22.7051	-2.678	4.3231
5		22.7455	-3.5141	4.4952
6		23.0321	-1.8343	4.3883

Table S9. The structure and docking parameters of selected molecular from the third round of molecular optimization

No.	Structure	Total score	Crash	Polar
1		23.6081	-2.6629	6.7003
2		23.0946	-2.3597	6.0287
3		23.1046	-2.9972	4.0831

(

IV. Figures of Molecular Dynamics Simulation Studies

Figure S1. RMSD plot of protein backbone for protein-ligand complexes during 500 ns simulation.

Lig-RMSD-op2-1

Lig-RMSD-op3-5

Lig-RMSD-op2-6

Lig-RMSD-op3-6

Figure S2. RMSD plot of ligand heavy atoms for protein-ligand complexes during 500 ns simulation.

RMSF-op2-1

RMSF-op3-5

RMSF-op2-6

RES_ID

RMSF-op3-6

Figure S3. RMSF plot of protein-ligand complexes during 500 ns simulation.

Figure S4. The stacked bar charts showing the protein-ligands interactions found during the 500 ns simulation run. The compounds op2-1 (a), op2-6 (b), op3-5 (c), and op3-6 (d) form multiple interactions with YEATS2 YEAST domain, mainly including hydrogen bonds, hydrophobic and water bridges. all the complex structures, it has been found to form multiple interactions including hydrogen bonds, hydrophobic, and water bridges. (a)The compound op2-1 generated multiple interactions at Tyr262, Trp282 and Gly283. (b) The compound op2-6 formed multiple interactions at His259, Ser261, Tyr262, Asn265, Trp282, and Gly283. (c) The compound op3-5 formed multiple interactions at His259, Ser261, Tyr262, Lys263, Trp282, and Gly283. (d) The compound op3-6 generated multiple interactions at His259, Tyr262, Trp282, and Gly283.

Figure S5. Ligand $-\mathrm{H}_{2} \mathrm{O} 533$ contacts during 500 ns simulation.

