ZIF-67 derived CuCo₂S₄@CoS₂ as an efficient bifunctional

electrocatalyst for Overall Water Splitting

Li-hu Qian[†], Wei-wei Dong [†]*, Yan-Bo Cao[†], Rui Ma[†] , Yi Ding[†], Xi Wang [‡]*

† Anhui Jianzhu University, 292 Ziyun Road, Hefei, Anhui 230022, PR China

‡ State Key Laboratory of Pulsed Power Laser Technology, Anhui Laboratory of Advanced Laser

Technology, Electronic Countermeasure Institute, National University of Defense Technology,

Hefei 230037, PR China

Fig S1. SEM and XRD results of the ZIF-67 template

^{*} Corresponding authors.

E-mail for Weiwei Dong: wwdong@ahjzu.edu.cn

E-mail for Xi Wang: eastangus@126.com

Fig S2. Raman spectra of CoS₂, CuCo₂S₄, and CuCo₂S₄@CoS₂.

Fig S3. The O 1s XPS spectra of CoS_2 , $CuCo_2S_4$, and $CuCo_2S_4@CoS_2$.

Fig S4. OER cyclic voltammetry of CoS₂ (a); CuCo₂S₄ (b); and CuCo₂S₄@CoS₂(c).

Fig S5. HER cyclic voltammetry of CoS₂ (a); CuCo₂S₄ (b); and CuCo₂S₄@CoS₂(c).

Figure S6. Faradic current efficiency for the HER and OER of the CuCo₂S₄@CoS₂ electrode measured at 110 mAcm⁻² in a 1M KOH aqueous electrolyte using conventional water displacement. The active electrode area of the cathode and anode was 0.9 cm⁻².

Catalyst	η ₁₀ (mV)	b (mV dec ⁻¹)	Electrolyte	Ref.
CuCo ₂ S ₄ @CoS ₂	261	89.2	1.0 м КОН	This work
Co ₃ O ₄ /CoS ₂	280	63	1.0 м КОН	[1]
CuCo ₂ S ₄ /NiCo ₂ S ₄	271	57	1.0 м КОН	[2]
CoS ₂ nanoboxes	290	72.2	1.0 м КОН	[3]
CuCo ₂ S ₄ UNS	269	41	1.0 м КОН	[4]
CoO/CoS ₂	320	77	1.0 м КОН	[5]
Ni-Doped CoS ₂	270	79	1.0 м КОН	[6]
Ni-Fe-OH/Ni3S2/NF	268	54	1.0 м КОН	[7]
CoS ₂ /CoS	269	52	1.0 м КОН	[8]
CuCo ₂ S ₄ /Fe ₂ O ₃	273	67	1.0 м КОН	[9]

Table S1. Comparison of OER performances of $CuCo_2S_4@CoS_2$ with other reported electrocatalysts.

Catalyst	η_{10} (mV)	b (mV dec ⁻¹)	Electrolyte	Ref.
$CuCo_2S_4@CoS_2$	153	151.7	1.0 м КОН	This work
CoS_2/MoS_2	177	66	1.0 м КОН	[10]
CuCo ₂ S ₄ /NiCo ₂ S ₄	206	90	1.0 м КОН	[2]
FeCo ₂ S ₄ -NiCo ₂ S ₄	150	38	1.0 м КОН	[11]
Sn-CoS ₂ /CC	161	94	1.0 м КОН	[12]
CoS ₂ /RGO	180	90	1.0 м КОН	[13]
$CoS_2@Co_3O_4$	320	42	1.0 м КОН	[14]
MoS ₂ /NiCo ₂ S ₄	139	37	1.0 м КОН	[15]
CoS ₂ HNSs	193	100	1.0 м КОН	[16]

Table S2. Comparison of HER performances of $CuCo_2S_4@CoS_2$ with other reported electrocatalysts.

Catalyst	Cell voltage	Stability (h)	Electrolyte	Ref.
	(V, @10 mA cm ⁻			
	²)			
CuCo ₂ S ₄ @CoS ₂	1.61	20	1.0м КОН	This work
CuCo ₂ S ₄ /NiCo ₂ S ₄	1.66	50	1.0 м КОН	[2]
CuCo ₂ S ₄	1.66	24	1.0 м КОН	[17]
CoS_2 - MoS_2	1.61	10	1.0 м КОН	[18]
Cu-CoP NAs/CP	1.72	60	1.0 м КОН	[19]
Cu_2S - Ni_3S_2	1.77	100	1.0 м КОН	[20]
O-CoMoS	1.6	10	1.0 м КОН	[21]
Co_9S_8 $@MoS_2$	1.67	16	1.0 м КОН	[22]
MoS ₂ -NiS ₂ /NGF/NF	1.64	24	1.0 м КОН	[23]

 Table S3. Comparison of the performances for water splitting system in this work with other

 reported electrocatalysts.

[1] Guo M, Xu K, Qu Y, Zeng F, Yuan C. Porous Co₃O₄/CoS₂ nanosheet-assembled hierarchical microspheres as superior electrocatalyst towards oxygen evolution reaction. Electrochimica Acta. 2018;268:10-9.

[2] Ma L, Liang J, Chen T, Liu Y, Li S, Fang G. 3D $CuCo_2S_4$ /Ni Co_2S_4 core-shell composites as efficient bifunctional electrocatalyst electrodes for overall water splitting. Electrochimica Acta. 2019;326:135002.

[3] Guo X, Liang G, Gu A. Designed formation of CoS_2 nanoboxes with enhanced oxygen evolution reaction electrocatalytic properties. International Journal of Hydrogen Energy. 2019;44:31020-8.

[4] Hao Z, Wei P, Yang Y, Sun J, Song Y, Guo D, et al. Self-assembled $CuCo_2S_4$ nanosheets with rich surface Co^{3+} as efficient electrocatalysts for oxygen evolution reaction. Applied Surface Science. 2021;536:147826.

[5] Qin T, Ding Y, Zhang R, Gao X, Tang Z, Liu Y, et al. Bifunctional CoO/CoS₂ hierarchical nanospheres electrocatalyst for rechargeable Zn-Air battery. FlatChem. 2022;32:100343.

[6] Xie Z, Tang H, Wang Y. MOF-Derived Ni-Doped CoS₂ Grown on Carbon Fiber Paper for Efficient Oxygen Evolution Reaction. ChemElectroChem. 2019;6:1206-12.

[7] He W, Ren G, Li Y, Jia D, Li S, Cheng J, et al. Amorphous nickel–iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction. Catalysis Science & Technology. 2020;10:1708-13.

[8] Hu X, Tan P, Dong R, Jiang M, Lu L, Wang Y, et al. A Novel Metal-Organic Framework

Intermediated Synthesis of Heterogeneous CoS₂/CoS Porous Nanosheets for Enhanced Oxygen Evolution Reaction. Energy Technology. 2021;9:2000961.

[9] Lu M, Zhang X, Tong J, Wang W, Wang Y. Enhanced Electron Transfer and Ion Transport by Binary and Multidimensional CuCo₂S₄/Fe₂O₃ on Carbon Cloth for Water Oxidation. Chemistry. 2021;27:238-41.

[10] Su C, Xiang J, Wen F, Song L, Mu C, Xu D, et al. Microwave Synthesized Threedimensional Hierarchical Nanostructure CoS₂/MoS₂ Growth on Carbon Fiber Cloth: A Bifunctional Electrode for Hydrogen Evolution Reaction and Supercapacitor. Electrochimica Acta. 2016;212:941-9.

[11] Li D, Liu Z, Wang J, Liu B, Qin Y, Yang W, et al. Hierarchical trimetallic sulfide $FeCo_2S_4$ -Ni Co_2S_4 nanosheet arrays supported on a Ti mesh: An efficient 3D bifunctional electrocatalyst for full water splitting. Electrochimica Acta. 2020;340:135957.

[12] Liu F, He W, Li Y, Wang F, Zhang J, Xu X, et al. Activating sulfur sites of CoS_2 electrocatalysts through tin doping for hydrogen evolution reaction. Applied Surface Science. 2021;546:149101.

[13] Yang Y, Li F, Li W, Gao W, Wen H, Li J, et al. Porous CoS₂ nanostructures based on ZIF-9 supported on reduced graphene oxide: Favourable electrocatalysis for hydrogen evolution reaction. International Journal of Hydrogen Energy. 2017;42:6665-73.

[14] Aftab U, Tahira A, Samo AH, Abro MI, Baloch MM, Kumar M, et al. Mixed CoS₂@Co₃O₄ composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy. 2020;45:13805-13.

[15] Sun L, Wang T, Zhang L, Sun Y, Xu K, Dai Z, et al. Mace-like hierarchical MoS₂/NiCo₂S₄ composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction. Journal of Power Sources. 2018;377:142-50.

[16] Ma X, Zhang W, Deng Y, Zhong C, Hu W, Han X. Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale. 2018;10:4816-24.

[17] Zequine C, Bhoyate S, Wang F, Li X, Siam K, Kahol PK, et al. Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage. Journal of Alloys and Compounds. 2019;784:1-7.

[18] Ganesan V, Kim J. Multi-shelled CoS_2 -MoS₂ hollow spheres as efficient bifunctional electrocatalysts for overall water splitting. International Journal of Hydrogen Energy. 2020;45:13290-9.

[19] Yan L, Zhang B, Zhu J, Li Y, Tsiakaras P, Kang Shen P. Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Applied Catalysis B: Environmental. 2020;265:118555.

[20] Bhat KS, Nagaraja HS. In Situ Synthesis of Copper Sulfide-Nickel Sulfide Arrays on Three-Dimensional Nickel Foam for Overall Water Splitting. ChemistrySelect. 2020;5:2455-64.

[21] Hou J, Zhang B, Li Z, Cao S, Sun Y, Wu Y, et al. Vertically Aligned Oxygenated-CoS₂– MoS₂ Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catalysis. 2018;8:4612-21.

[22] Bai J, Meng T, Guo D, Wang S, Mao B, Cao M. Co₉S₈@MoS₂ Core-Shell Heterostructures as Trifunctional Electrocatalysts for Overall Water Splitting and Zn-Air Batteries. ACS Appl Mater Interfaces. 2018;10:1678-89.

[23] Kuang P, He M, Zou H, Yu J, Fan K. 0D/3D MoS₂-NiS₂/N-doped graphene foam composite for efficient overall water splitting. Applied Catalysis B: Environmental. 2019;254:15-25.