Unusual participation of *O*-propargyl group during cyclization of 6-hydroxy-2-propargyl ethers of aryl chalcones: One-pot synthesis of 2acyl-3-styrylbenzofuran and 7-aryldibenzo[*b*,*d*]furan-1,7-diols

Arimalai Dinakararaja Samyuktha^a, Kannatt Radhakrishnan Ethiraj^{a*}, and Ponnusamy Shanmugam^{b*}

^aDepartment of Chemistry, School of Advanced Sciences, VIT, Vellore-632014, India, Email: <u>krethiraj@vit.ac.in</u>

^bOrganic and Bioorganic Chemistry Division, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India; Email: <u>shanmu196@rediffmail.com</u>

Content

- 1. Scanned copies of spectra (¹H and ¹³C NMR, DEPT-135, FTIR, HRMS)
- 2. Basic crystallographic data for compounds 6f, 7d, and 20.

4. Scanned copies of spectra (¹H and ¹³C NMR, DEPT-135, FTIR, HRMS)

Figure 2: ¹³C NMR spectrum of compound 3

Figure 3: DEPT-135 NMR spectrum of compound 3

Figure 4: FT-IR spectrum of compound 3

Figure 5: HRMS spectrum of compound 3

Figure 6: ¹H NMR spectrum of compound 5a

Figure 7: ¹³C NMR spectrum of compound 5a

Figure 8: DEPT-135 NMR spectrum of compound 5a

Figure 10: HRMS spectrum of compound 5a

S 7

80

60

Figure 12: ¹³C NMR spectrum of compound 5b

40

20

ppm

F2 - Prod SI SF WDW SSB (LB GB 0 PC

0

0

cessing parameters 32768 100.6449466 MHz EM

1.00 Hz

1.40

120

100

140

160

200

180

Figure 14: FT-IR spectrum of compound 5b

Figure 16: ¹H NMR spectrum of compound 5c

Figure 18: DEPT-135 NMR spectrum of compound 5c

Figure 19: FT-IR spectrum of compound 5c

Figure 20: HRMS spectrum of compound 5c

Figure 21: ¹H NMR spectrum of compound 5d

Figure 22: ¹³C NMR spectrum of compound 5d

Figure 23: DEPT-135 NMR spectrum of compound 5d

Figure 24: FT-IR spectrum of compound 5d

Figure 25: HRMS spectrum of compound 5d

Figure 26: ¹H NMR spectrum of compound 5e

Figure 28: DEPT-135 NMR spectrum of compound 5e

Figure 29: FT-IR spectrum of compound 5e

Figure 30: HRMS spectrum of compound 5e

Figure 31: ¹H NMR spectrum of compound 5f

Figure 32: ¹³C NMR spectrum of compound 5f

Figure 34: FT-IR spectrum of compound 5f

Figure 35: HRMS spectrum of compound 5f

Figure 36: ¹H NMR spectrum of compound 5g

Figure 37: ¹³C NMR spectrum of compound 5g

Figure 38: DEPT-135 NMR spectrum of compound 5g

Figure 40: HRMS spectrum of compound 5g

Figure 41: ¹H NMR spectrum of compound 5h

Figure 42: ¹³C NMR spectrum of compound 5h

Figure 43: DEPT-135 NMR spectrum of compound 5h

Figure 44: FT-IR spectrum of compound 5h

Figure 45: HRMS spectrum of compound 5h

Figure 46: ¹H NMR spectrum of compound 5i

Figure 47: ¹³C NMR spectrum of compound 5i

Figure 48: DEPT-135 NMR spectrum of compound 5i

Figure 49: FT-IR spectrum of compound 5i

Figure 50: HRMS spectrum of compound 5i

Figure 51: ¹H NMR spectrum of compound 5j

Figure 52: ¹³C NMR spectrum of compound 5j

Figure 53: DEPT-135 NMR spectrum of compound 5j

Figure 54: FT-IR spectrum of compound 5j

Figure 55: HRMS spectrum of compound 5j

Figure 56: ¹H NMR spectrum of compound 5k

Figure 57: ¹³C NMR spectrum of compound 5k

Figure 58: DEPT-135 NMR spectrum of compound 5k

Figure 59: FT-IR spectrum of compound 5k

Figure 60: HRMS spectrum of compound 5k

Figure 61: ¹H NMR spectrum of compound 5I

Figure 62: ¹³C NMR spectrum of compound 5l

Figure 63: DEPT-135 NMR spectrum of compound 51

Figure 64: FT-IR spectrum of compound 51

Figure 65: HRMS spectrum of compound 51

Figure 66: ¹H NMR spectrum of compound 6a

Figure 67: ¹³C NMR spectrum of compound 6a

Figure 68: DEPT-135 NMR spectrum of compound 6a

Figure 69: FT-IR spectrum of compound 6a

Figure 71: ¹H NMR spectrum of compound **6b**

Figure 72: ¹³C NMR spectrum of compound 6b

Figure 73: DEPT-135 NMR spectrum of compound 6b

Figure 74: FT-IR spectrum of compound 6b

Figure 75: HRMS spectrum of compound 6b

Figure 76: ¹H NMR spectrum of compound 6c

Figure 77: ¹³C NMR spectrum of compound 6c

Figure 78: DEPT-135 NMR spectrum of compound 6c

Figure 79: FT-IR spectrum of compound 6c

Figure 80: HRMS spectrum of compound 6c

Figure 82: ¹³C NMR spectrum of compound 6d

Figure 83: DEPT-135 NMR spectrum of compound 6d

Figure 84: FT-IR spectrum of compound 6d

Figure 86: ¹H NMR spectrum of compound 6e

Figure 87: ¹³C NMR spectrum of compound 6e

Figure 88: DEPT-135 NMR spectrum of compound 6e

Figure 90: HRMS spectrum of compound 6e

Figure 91: ¹H NMR spectrum of compound 6e

Figure 92: ¹³C NMR spectrum of compound 6e

Figure 93: DEPT-135 NMR spectrum of compound 6e

Figure 94: FT-IR spectrum of compound 6e

Figure 96: ¹H NMR spectrum of compound 6f

Figure 97: ¹³C NMR spectrum of compound 6f

Figure 98: HRMS spectrum of compound 6f

Figure 99: FT-IR spectrum of compound 6f

Figure 100: HRMS spectrum of compound 6g

Figure 101: ¹H NMR spectrum of compound 6h

Figure 102: ¹³C NMR spectrum of compound 6h

Figure 103: DEPT-135 NMR spectrum of compound 6h

Figure 104: FT-IR spectrum of compound 6h

Figure 105: HRMS spectrum of compound 6h

Figure 106: ¹H NMR spectrum of compound 6i

Figure 108: DEPT-135 NMR spectrum of compound 6i

Figure 109: HRMS spectrum of compound 6i

Figure 110: ¹H NMR spectrum of compound 6j

Figure 111: ¹³C NMR spectrum of compound 6j

Figure 113: FT-IR spectrum of compound 6j

Figure 114: HRMS spectrum of compound 6j

Figure 115: ¹H NMR spectrum of compound 6k

Figure 117: DEPT-135 NMR spectrum of compound 6k

Figure 119: HRMS spectrum of compound 6k

Figure 120: ¹H NMR spectrum of compound 6I

Figure 121: ¹³C NMR spectrum of compound 6l

Figure 122: DEPT-135 NMR spectrum of compound 6I

Figure 123: FT-IR spectrum of compound 6l

Figure 124: HRMS spectrum of compound 6l

Figure 125: ¹H NMR spectrum of compound 7a

Figure 126: ¹³C NMR spectrum of compound 7a

Figure 127: DEPT-135 NMR spectrum of compound 7a

Figure 128: FT-IR spectrum of compound 7a

Figure 129: HRMS spectrum of compound 7a

Figure 130: ¹H NMR spectrum of compound 7b

Figure 131: ¹³C NMR spectrum of compound 7b

Figure 132: DEPT-135 NMR spectrum of compound 7b

Figure 133: FT-IR spectrum of compound 7b

Figure 134: HRMS spectrum of compound 7b

Figure 135: ¹H NMR spectrum of compound 7c

Figure 136: ¹³C NMR spectrum of compound 7c

Figure 137: DEPT-135 NMR spectrum of compound 7c

Figure 138: FT-IR spectrum of compound 7c

Figure 139: HRMS spectrum of compound 7c

Figure 140: ¹H NMR spectrum of compound 7d

Figure 141: ¹³C NMR spectrum of compound 7d

Figure 142: DEPT-135 NMR spectrum of compound 7d

Figure 143: FT-IR spectrum of compound 7d

Figure 144: HRMS spectrum of compound 7d

Figure 145: ¹H NMR spectrum of compound 7e

Figure 146: ¹³C NMR spectrum of compound 7e

Figure 147: DEPT-135 NMR spectrum of compound 7e

Figure 148: FT-IR spectrum of compound 7e

Figure 149: HRMS spectrum of compound 7e

Figure 150: ¹H NMR spectrum of compound 7f

Figure 153: FT-IR spectrum of compound 7f

Figure 154: HRMS spectrum of compound 7f

Figure 155: ¹H NMR spectrum of compound 7g

Figure 156: ¹³C NMR spectrum of compound 7g

Figure 157: DEPT-135 NMR spectrum of compound 7g

Figure 159: HRMS spectrum of compound 7g

Figure 160: ¹H NMR spectrum of compound 7h

Figure 161: ¹³C NMR spectrum of compound 7h

Figure 162: DEPT-135 NMR spectrum of compound 7h

Figure 163: FT-IR spectrum of compound 7h

Figure 164: HRMS spectrum of compound 7h

Figure 165: ¹H NMR spectrum of compound 7i

Figure 166: ¹³C NMR spectrum of compound 7i

Figure 167: DEPT-135 NMR spectrum of compound 7i

Figure 168: FT-IR spectrum of compound 7i

Figure 169: HRMS spectrum of compound 7i

Figure 170: ¹H NMR spectrum of compound 7j

Figure 171: ¹³C NMR spectrum of compound 7j

Figure 172: DEPT-135 NMR spectrum of compound 7j

Figure 173: FT-IR spectrum of compound 7j

Figure 174: HRMS spectrum of compound 7j

Figure 175: ¹H NMR spectrum of compound 7k

Figure 176: ¹³C NMR spectrum of compound 7k

Figure 177: DEPT-135 NMR spectrum of compound 7k

Figure 178: FT-IR spectrum of compound 7k

Figure 179: HRMS spectrum of compound 7k

Figure 181: ¹³C NMR spectrum of compound 7I

Figure 182: DEPT-135 NMR spectrum of compound 71

Figure 183: FT-IR spectrum of compound 71

Figure 184: HRMS spectrum of compound 71

Figure 185: ¹H NMR spectrum of compound 14

Figure 186: ¹³C NMR spectrum of compound 14

Figure 187: DEPT-135 NMR spectrum of compound 14

Figure 189: HRMS spectrum of compound 14

Figure 190: ¹H NMR spectrum of compound 14

Figure 191: ¹³C NMR spectrum of compound 14

Figure 192: DEPT-135 NMR spectrum of compound 14

Figure 193: FT-IR spectrum of compound 14

Figure 194: FT-IR spectrum of compound 14

Figure 195: ¹H-NMR spectrum of compound 15

Figure 196: ¹³C-NMR spectrum of compound 15

Figure 197: DEPT-135 NMR spectrum of compound 15

Figure 198: FT-IR spectrum of compound 15

Figure 199: HRMS spectrum of compound 15

Figure 202: DEPT-135 NMR spectrum of compound 9

Figure 203: FT-IR spectrum of compound 9

Figure 204: HRMS spectrum of compound 9

Figure 205: ¹H-NMR spectrum of compound 10

Figure 207: DEPT -135 NMR spectrum of compound 10

Figure 209: HRMS spectrum of compound 10

Figure 210: ¹H-NMR spectrum of compound 11

Figure 211: ¹³C-NMR spectrum of compound 11

Figure 212: DEPT-135-NMR spectrum of compound 11

Figure 213: FT-IR spectrum of compound 11

Figure 214: HRMS spectrum of compound 11

Figure 215: ¹³H-NMR spectrum of compound 17

SUPPORTING INFORMATION FOR NEW JOURNAL OF CHEMISTRY

Figure 216: ¹³C-NMR spectrum of compound 17

Figure 217: DEPT-135 NMR spectrum of compound 17

Figure 218: HRMS spectrum of compound 17

Figure 219: ¹H-NMR spectrum of compound 18

Figure 220: ¹³C-NMR spectrum of compound 18

Figure 221: DEPT-135 NMR spectrum of compound 18

Figure 222: HRMS spectrum of compound 18

Figure 223: ¹H-NMR spectrum of compound 19

Figure 224: ¹³C-NMR spectrum of compound 19

Figure 225: DEPT-135 NMR spectrum of compound 19

Figure 226: HRMS spectrum of compound 19

Figure 227: ¹H-NMR spectrum of compound 21

Figure 228: ¹³C-NMR spectrum of compound 21

Figure 229: DEPT 135-NMR spectrum of compound 21

Figure 230: ¹H-NMR spectrum of compound 22

Figure 231: ¹³C-NMR spectrum of compound 22

Figure 232: DEPT 135-NMR spectrum of compound 22

Figure 233: ¹H-NMR spectrum of compound 23

Figure 234: ¹³C-NMR spectrum of compound 23

Figure 235: DEPT-135 NMR spectrum of compound 23

Figure 236: FT-IR spectrum of compound 23

Figure 237: HRMS spectrum of compound 23

Figure 238: ¹H-NMR spectrum of compound 24

Figure 239: ¹³C-NMR spectrum of compound 24

Figure 240: DEPT-135 NMR of compound 24

Figure 241: FT-IR spectrum of compound 24

Figure 243: ¹H-NMR spectrum of compound 25

Figure 244: ¹³C-NMR spectrum of compound 25

Figure 245: DEPT-135 NMR spectrum of compound 25

Figure 247: HRMS spectrum of compound 25

Figure 248: ¹H-NMR spectrum of compound 26

Figure 249: ¹³C-NMR spectrum of compound 26

Figure 250: DEPT-135 NMR spectrum of compound 26

Figure 251: FT-IR spectrum of compound 26

Figure 252: HRMS spectrum of compound 26

Figure 253: ¹H NMR spectrum of compound 27

Figure 254: ¹³C NMR spectrum of compound 27

Figure 255: DEPT-135 NMR spectrum of compound 27

Figure 256: FT-IR spectrum of compound 27

Figure 257: HRMS spectrum of compound 27

Figure 258: ¹H NMR spectrum of compound 28

Figure 259: ¹³C NMR spectrum of compound 28

Figure 260: DEPT-135 NMR spectrum of compound 28

Figure 261: FT-IR spectrum of compound 28

Figure 262: HRMS spectrum of compound 28

Figure 263: ¹H-NMR spectrum of compound 29

Figure 264: ¹³C-NMR spectrum of compound 29

Figure 265: DEPT-135 NMR spectrum of compound 29

Figure 267: FT-IR spectrum of compound 29

5. Basic crystallographic data for compounds 6f, 7d and 23

Crystal Structure Report for compound 6f

CCDC NUMBER: 2266920

A specimen of $C_{24}H_{18}O_3$, approximate dimensions 0.117 mm x 0.134 mm x 0.245 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda = 0.71073 \text{ Å}$).

The integration of the data using a monoclinic unit cell yielded a total of 26560 reflections to a maximum θ angle of 28.31° (0.75 Å resolution), of which 4550 were independent (average redundancy 5.837, completeness =99.6%, $R_{int} = 4.63\%$, $R_{sig} = 3.94\%$) and 2689 (59.10%) $2\sigma(F^2)$. The were greater than final cell constants of a = 11.3959(7) Å, b = 17.1806(10) Å, c = 10.1872(7) Å, β $= 113.005(2)^{\circ},$ volume = 1835.9(2) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 $\sigma(I)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9800 and 0.9900.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 4 for the formula unit, $C_{24}H_{18}O_3$. The final anisotropic full-matrix least-squares refinement on F² with 248 variables converged at R1 = 4.90%, for the observed data and wR2 = 14.08% for all data. The goodness-of-fit was 1.024. The largest peak in the final difference electron density synthesis was 0.138 e⁻/Å³ and the largest hole was - 0.199 e⁻/Å³ with an RMS deviation of 0.036 e⁻/Å³. On the basis of the final model, the calculated density was 1.282 g/cm³ and F(000), 744 e⁻.

Table 1. Sample and crystal data for compound 6f.

Identification code	SA151BF1RE			
Chemical formula	$C_{24}H_{18}O_3$			
Formula weight	354.38 g/mol			
Temperature	300(2) K			
Wavelength	0.71073 Å			
Crystal size	0.117 x 0.134 x 0.245 mm			
Crystal system	monoclinic			
Space group	P 1 21/c 1			
Unit cell dimensions	a = 11.3959(7) Å	$\alpha = 90^{\circ}$		
	b = 17.1806(10) Å	$\beta = 113.005(2)^{\circ}$		
	c = 10.1872(7) Å	$\gamma=90^{\circ}$		
Volume	1835.9(2) Å ³			
Z	4			
Density (calculated)	1.282 g/cm ³			
Absorption coefficient	0.084 mm ⁻¹			
F (000)	744			

Table 2. Data collection and structure refinement for compound 6f.

Theta range for data collection 2.27 to 28.31°

Index ranges	-15<=h<=13, -22<=k	<=20, -13<=l<=13			
Reflections collected	26560				
Independent reflections	4550 [R(int) = 0.046	3]			
Max. and min. transmission	0.9900 and 0.9800				
Structure solution technique	direct methods				
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)				
Refinement method	Full-matrix least-squares on F ²				
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)				
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$				
Data / restraints / parameters	4550 / 0 / 248				
Goodness-of-fit on F ²	1.024				
Final R indices	2689 data; I>2σ(I)	R1 = 0.0490, wR2 = 0.1070			
	all data	R1 = 0.1001, wR2 = 0.1408			
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.050) where P=(F_o^2 +2 F_c^2)/2	08P) ² +0.5371P] 3			
Largest diff. peak and hole	$0.138 \text{ and } -0.199 \text{ e}^{-1}$	3			
R.M.S. deviation from mean	0.036 eÅ ⁻³				

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters ($Å^2$) for compound **6f.**

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
01	0.69410(11)	0.47727(7)	0.02448(13)	0.0542(3)
O2	0.58927(15)	0.32554(8)	0.77378(16)	0.0793(5)
03	0.42273(15)	0.66664(8)	0.73465(15)	0.0774(5)
C1	0.08381(19)	0.58691(11)	0.5324(2)	0.0591(5)
C2	0.09743(16)	0.58935(10)	0.40268(17)	0.0468(4)
C3	0.04860(17)	0.65399(11)	0.31615(19)	0.0547(5)
C4	0.98571(18)	0.71206(11)	0.3553(2)	0.0600(5)
C5	0.97018(19)	0.70742(12)	0.4817(2)	0.0644(5)
C6	0.0208(2)	0.64521(13)	0.5706(2)	0.0695(6)
C7	0.14954(17)	0.52239(10)	0.34976(17)	0.0461(4)
C8	0.07439(19)	0.49328(11)	0.21497(18)	0.0559(5)
C9	0.1104(2)	0.42890(11)	0.15928(19)	0.0591(5)
C10	0.22325(19)	0.39188(11)	0.23783(19)	0.0553(5)
C11	0.29945(18)	0.41996(10)	0.37068(19)	0.0523(5)
C12	0.26556(16)	0.48535(10)	0.43014(17)	0.0446(4)
C13	0.35151(16)	0.51548(10)	0.56966(18)	0.0480(4)
C14	0.44184(17)	0.47374(10)	0.66663(18)	0.0504(4)
C15	0.53316(16)	0.49601(9)	0.80636(18)	0.0453(4)
C16	0.61872(16)	0.44379(10)	0.89579(18)	0.0496(4)
C17	0.65652(16)	0.55296(10)	0.01675(19)	0.0493(4)
C18	0.55830(16)	0.56871(9)	0.88538(18)	0.0451(4)
C19	0.64560(19)	0.36197(11)	0.8837(2)	0.0610(5)
C20	0.71226(19)	0.60572(12)	0.1253(2)	0.0633(5)
C21	0.6658(2)	0.67976(12)	0.0982(2)	0.0745(6)
C22	0.5693(2)	0.69990(12)	0.9688(2)	0.0709(6)
C23	0.51522(18)	0.64612(10)	0.8618(2)	0.0563(5)
C24	0.7445(2)	0.32347(13)	0.0100(3)	0.0898(8)

O1-C17	1.362(2)	O1-C16	1.381(2)
O2-C19	1.223(2)	O3-C23	1.358(2)
O3-H1B	0.98(3)	C1-C6	1.375(3)
C1-C2	1.390(3)	C1-H1	0.930000
C2-C3	1.392(2)	C2-C7	1.489(2)
C3-C4	1.375(3)	C3-H3	0.930000
C4-C5	1.369(3)	C4-H4	0.930000
C5-C6	1.374(3)	C5-H5	0.930000
С6-Н6	0.930000	C7-C8	1.396(2)
C7-C12	1.406(2)	C8-C9	1.377(3)
C8-H8	0.930000	C9-C10	1.377(3)
С9-Н9	0.930000	C10-C11	1.378(2)
C10-H10	0.930000	C11-C12	1.400(2)
C11-H11	0.930000	C12-C13	1.469(2)
C13-C14	1.325(2)	C13-H13	0.930000
C14-C15	1.448(2)	C14-H14	0.930000
C15-C16	1.375(2)	C15-C18	1.453(2)
C16-C19	1.454(3)	C17-C20	1.378(3)
C17-C18	1.395(2)	C18-C23	1.405(2)
C19-C24	1.494(3)	C20-C21	1.364(3)
C20-H20	0.930000	C21-C22	1.391(3)
C21-H21	0.930000	C22-C23	1.377(3)
С22-Н22	0.930000	C24-H24A	0.960000
C24-H24B	0.960000	C24-H24C	0.960000

			0				
Table 4.	Bond	lengths	(Å)	for	com	pound	6f.

Table 5. 1	Bond	angles	(°)	for	compound	6f.
------------	------	--------	-----	-----	----------	-----

C17-O1-C16	106.13(13)	C23-O3-H1B	110.5(15)
C6-C1-C2	120.80(18)	C6-C1-H1	119.600000
C2-C1-H1	119.600000	C1-C2-C3	117.44(17)
C1-C2-C7	121.96(16)	C3-C2-C7	120.30(16)
C4-C3-C2	121.33(18)	С4-С3-Н3	119.300000
С2-С3-Н3	119.300000	C5-C4-C3	120.27(18)
С5-С4-Н4	119.900000	С3-С4-Н4	119.900000
C4-C5-C6	119.4(2)	C4-C5-H5	120.300000
С6-С5-Н5	120.300000	C5-C6-C1	120.7(2)
С5-С6-Н6	119.600000	С1-С6-Н6	119.600000
C8-C7-C12	119.10(17)	C8-C7-C2	117.04(15)
C12-C7-C2	123.79(15)	C9-C8-C7	121.73(18)
С9-С8-Н8	119.100000	С7-С8-Н8	119.100000
C10-C9-C8	119.53(17)	С10-С9-Н9	120.200000
С8-С9-Н9	120.200000	C9-C10-C11	119.73(18)
С9-С10-Н10	120.100000	С11-С10-Н10	120.100000
C10-C11-C12	122.09(17)	C10-C11-H11	119.000000
C12-C11-H11	119.000000	C11-C12-C7	117.81(15)
C11-C12-C13	120.58(16)	C7-C12-C13	121.57(16)
C14-C13-C12	124.09(16)	C14-C13-H13	118.000000
С12-С13-Н13	118.000000	C13-C14-C15	129.82(17)
C13-C14-H14	115.100000	C15-C14-H14	115.100000
C16-C15-C14	122.00(16)	C16-C15-C18	104.99(14)

C14-C15-C18	133.01(15)	C15-C16-O1	111.97(15)
C15-C16-C19	133.84(16)	O1-C16-C19	114.19(15)
O1-C17-C20	123.08(16)	O1-C17-C18	110.92(14)
C20-C17-C18	125.99(17)	C17-C18-C23	116.32(15)
C17-C18-C15	105.98(14)	C23-C18-C15	137.63(16)
O2-C19-C16	121.32(17)	O2-C19-C24	120.78(18)
C16-C19-C24	117.89(18)	C21-C20-C17	115.48(18)
С21-С20-Н20	122.300000	С17-С20-Н20	122.300000
C20-C21-C22	121.64(18)	C20-C21-H21	119.200000
C22-C21-H21	119.200000	C23-C22-C21	121.80(19)
С23-С22-Н22	119.100000	С21-С22-Н22	119.100000
O3-C23-C22	121.39(17)	O3-C23-C18	119.85(16)
C22-C23-C18	118.75(17)	C19-C24-H24A	109.500000
C19-C24-H24B	109.500000	H24A-C24-H24B	109.500000
C19-C24-H24C	109.500000	H24A-C24-H24C	109.500000
H24B-C24-H24C	109.500000		

Table 6. Torsion angles (°) for **6f.**

C6-C1-C2-C3	2.0(3)	C6-C1-C2-C7	-171.66(18)
C1-C2-C3-C4	-2.0(3)	C7-C2-C3-C4	171.78(16)
C2-C3-C4-C5	0.2(3)	C3-C4-C5-C6	1.6(3)

C4-C5-C6-C1	-1.6(3)	C2-C1-C6-C5	-0.3(3)
C1-C2-C7-C8	124.68(19)	C3-C2-C7-C8	-48.8(2)
C1-C2-C7-C12	-52.2(2)	C3-C2-C7-C12	134.35(18)
C12-C7-C8-C9	0.6(3)	C2-C7-C8-C9	-176.40(17)
C7-C8-C9-C10	0.0(3)	C8-C9-C10-C11	-0.5(3)
C9-C10-C11-C12	0.5(3)	C10-C11-C12-C7	0.1(3)
C10-C11-C12-C13	-177.60(17)	C8-C7-C12-C11	-0.6(2)
C2-C7-C12-C11	176.13(16)	C8-C7-C12-C13	177.07(16)
C2-C7-C12-C13	-6.2(3)	C11-C12-C13-C14	-21.8(3)
C7-C12-C13-C14	160.60(18)	C12-C13-C14-C15	179.29(17)
C13-C14-C15-C16	177.94(19)	C13-C14-C15-C18	-1.0(3)
C14-C15-C16-O1	-178.45(15)	C18-C15-C16-O1	0.7(2)
C14-C15-C16-C19	1.2(3)	C18-C15-C16-C19	-179.6(2)
C17-O1-C16-C15	-0.5(2)	C17-O1-C16-C19	179.77(17)
C16-O1-C17-C20	-178.71(18)	C16-O1-C17-C18	0.01(19)
01-C17-C18-C23	-177.08(16)	C20-C17-C18-C23	1.6(3)
O1-C17-C18-C15	0.4(2)	C20-C17-C18-C15	179.09(19)
C16-C15-C18-C17	-0.7(2)	C14-C15-C18-C17	178.36(19)
C16-C15-C18-C23	176.0(2)	C14-C15-C18-C23	-5.0(4)
C15-C16-C19-O2	2.9(4)	01-C16-C19-O2	-177.41(19)

C15-C16-C19-C24	-177.1(2)	01-C16-C19-C24	2.6(3)
O1-C17-C20-C21	177.93(19)	C18-C17-C20-C21	-0.6(3)
C17-C20-C21-C22	-0.4(3)	C20-C21-C22-C23	0.4(4)
C21-C22-C23-O3	-178.7(2)	C21-C22-C23-C18	0.7(3)
C17-C18-C23-O3	177.83(17)	C15-C18-C23-O3	1.4(4)
C17-C18-C23-C22	-1.6(3)	C15-C18-C23-C22	-178.0(2)

Table 7. Anisotropic atomic displacement parameters $(Å^2)$ for compound **6f.**

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U11	U_{22}	U33	U23	U 13	U12
01	0.0466(7)	0.0458(7)	0.0533(7)	-0.0015(6)	0.0013(6)	0.0019(5)
O2	0.0915(11)	0.0421(8)	0.0748(10)	-0.0075(7)	0.0005(8)	0.0088(7)
03	0.0885(11)	0.0381(7)	0.0690(9)	-0.0006(6)	-0.0087(8)	0.0066(7)
C1	0.0712(13)	0.0503(11)	0.0526(11)	0.0077(9)	0.0208(10)	0.0037(10)
C2	0.0425(9)	0.0439(10)	0.0444(9)	0.0031(7)	0.0065(7)	-0.0030(7)
C3	0.0559(11)	0.0513(11)	0.0478(10)	0.0068(8)	0.0102(9)	-0.0008(9)
C4	0.0566(12)	0.0435(10)	0.0637(12)	0.0053(9)	0.0062(10)	0.0026(9)
C5	0.0595(12)	0.0511(12)	0.0773(14)	-0.0054(10)	0.0209(11)	0.0028(9)
C6	0.0860(15)	0.0614(14)	0.0658(13)	-0.0018(11)	0.0349(12)	0.0003(12)
C7	0.0506(10)	0.0413(9)	0.0399(9)	0.0049(7)	0.0108(8)	-0.0041(8)
C8	0.0585(11)	0.0563(12)	0.0408(9)	0.0047(8)	0.0063(9)	-0.0014(9)
C9	0.0717(13)	0.0589(12)	0.0385(9)	-0.0023(9)	0.0127(9)	-0.0116(10)
C10	0.0692(13)	0.0461(10)	0.0510(10)	-0.0052(8)	0.0241(10)	-0.0095(9)
	U 11	U22	U 33	U23	U 13	U12
-----	-------------	------------	-------------	-------------	-------------	-------------
C11	0.0553(11)	0.0450(10)	0.0507(10)	0.0009(8)	0.0143(9)	-0.0010(8)
C12	0.0480(10)	0.0391(9)	0.0416(9)	0.0028(7)	0.0118(8)	-0.0031(7)
C13	0.0481(10)	0.0392(9)	0.0480(10)	-0.0024(7)	0.0094(8)	-0.0013(8)
C14	0.0550(11)	0.0369(9)	0.0484(10)	-0.0014(7)	0.0086(8)	-0.0004(8)
C15	0.0438(9)	0.0384(9)	0.0461(9)	0.0016(7)	0.0092(8)	-0.0016(7)
C16	0.0463(10)	0.0432(10)	0.0479(10)	-0.0018(8)	0.0060(8)	0.0001(8)
C17	0.0431(9)	0.0427(10)	0.0539(10)	-0.0020(8)	0.0101(8)	-0.0017(8)
C18	0.0423(9)	0.0378(9)	0.0475(9)	-0.0012(7)	0.0093(7)	-0.0028(7)
C19	0.0540(11)	0.0441(11)	0.0690(13)	0.0007(10)	0.0067(10)	0.0046(9)
C20	0.0563(12)	0.0558(12)	0.0584(12)	-0.0093(9)	0.0015(9)	-0.0063(9)
C21	0.0741(14)	0.0540(13)	0.0709(14)	-0.0202(11)	0.0017(11)	-0.0075(11)
C22	0.0730(14)	0.0411(11)	0.0780(14)	-0.0121(10)	0.0072(11)	-0.0004(10)
C23	0.0556(11)	0.0408(10)	0.0574(11)	-0.0005(8)	0.0057(9)	-0.0006(8)
C24	0.0742(15)	0.0621(14)	0.0963(17)	0.0039(12)	-0.0066(13)	0.0251(12)

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for compound **6f.**

	x/a	y/b	z/c	U(eq)
H1B	0.410(3)	0.7229(18)	0.730(3)	0.116000
H1	0.1178	0.5453	0.5941	0.071000
H3	0.0587	0.6580	0.2301	0.066000
H4	-0.0464	0.7547	0.2957	0.072000
Н5	-0.0742	0.7460	0.5071	0.077000
H6	0.0123	0.6425	0.6577	0.083000
H8	-0.0020	0.5180	0.1614	0.067000
Н9	0.0588	0.4105	0.0692	0.071000

	SUPPORTING INFORMATION FOR NEW JOURNAL OF CHEMISTRY			
	x/a	y/b	z/c	U(eq)
H10	0.2480	0.3481	0.2014	0.066000
H11	0.3758	0.3947	0.4225	0.063000
H13	0.3419	0.5671	0.5912	0.058000
H14	0.4475	0.4223	0.6411	0.060000
H20	0.7771	0.5918	1.2113	0.076000
H21	0.6995	0.7177	1.1680	0.089000
H22	0.5405	0.7511	0.9541	0.085000
H24A	0.7256	0.3324	1.0927	0.135000
H24B	0.8268	0.3448	1.0256	0.135000
H24C	0.7447	0.2685	0.9929	0.135000

Table 9. Hydrogen bond distances (Å) and angles (°) for compound $\mathbf{6f.}$

	Donor-H	Acceptor-H	Donor-Acceptor	Angle
O3-H1B O2#1	0.98(3)	1.76(3)	2.7331(19)	172.(2)
C22-H22 O2#1	0.930000	2.560000	3.247(3)	131.500000

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, y+1/2, -z+3/2

Crystal Structure Report for compound 7d

CCDC NUMBER: 2181857

A specimen of $C_{24}H_{16}O_3$ was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda = 0.71073$ Å).

The integration of the data using a triclinic unit cell yielded a total of 38013 reflections to a maximum θ angle of 28.29° (0.75 Å resolution), of which 4227 were independent (average redundancy 8.993, completeness = 99.2%, $R_{int} = 3.90\%$, $R_{sig} = 2.55\%$) and 3088 (73.05%) than $2\sigma(F^2)$. The were greater final cell constants of <u>a</u> = 9.1787(5) Å, <u>b</u> = 9.1920(5) Å, <u>c</u> = 11.2622(6) Å, $\alpha = 105.164(2)^{\circ}$, $\beta = 92.910(2)^{\circ}$, γ = $109.138(2)^{\circ}$, volume = 856.66(8) Å³, are based upon the refinement of the XYZ-centroids of reflections 20 above σ(I).

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 2 for the formula unit, $C_{24}H_{16}O_3$. The final anisotropic full-matrix least-squares refinement on F² with 250 variables converged at R1 = 4.65%, for the observed data and wR2 = 13.66% for all data. The goodness-of-fit was 0.954. The largest peak in the final difference electron density synthesis was 0.200 e⁻/Å³ and the largest hole was -0.164 e⁻/Å³ with an RMS deviation of 0.032 e⁻/Å³. On the basis of the final model, the calculated density was 1.366 g/cm³ and F (000), 368 e⁻.

Table 1. Sample and crystal data for compound 7d.

Identification code	work_3	
Chemical formula	$C_{24}H_{16}O_3$	
Formula weight	352.37 g/mol	
Temperature	302(2) K	
Wavelength	0.71073 Å	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.1787(5) Å	$\alpha = 105.164(2)^{\circ}$
	b = 9.1920(5) Å	$\beta = 92.910(2)^{\circ}$
	c = 11.2622(6) Å	$\gamma = 109.138(2)$ °
Volume	856.66(8) Å ³	
Z	2	
Density (calculated)	1.366 g/cm ³	
Absorption coefficient	0.090 mm ⁻¹	
F (000)	368	

Table 2. Data collection and structure refinement for compound 7d.

Theta range for data collection	2.38 to 28.29°
Index ranges	-12<=h<=12, -12<=k<=12, -15<=l<=14
Reflections collected	38013
Independent reflections	4227 [R(int) = 0.0390]
Structure solution technique	direct methods
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)

Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)		
Function minimized	$\Sigma \ w \ (F_o{}^2 - F_c{}^2)^2$		
Data / restraints / parameters	4227 / 0 / 250		
Goodness-of-fit on F ²	0.954		
Final R indices	3088 data; I>2σ(I)	R1 = 0.0465, wR2 = 0.1138	
	all data	R1 = 0.0713, wR2 = 0.1366	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0605] where P=(F_o^2 +2 F_c^2)/3	P) ² +0.3197P]	
Largest diff. peak and hole	0.200 and -0.164 eÅ ⁻³		
R.M.S. deviation from mean	0.032 eÅ ⁻³		

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for compound **7d.**

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
01	0.93069(13)	0.31243(14)	0.27708(10)	0.0515(3)
O2	0.81086(16)	0.01954(14)	0.57457(12)	0.0588(3)
O3	0.69277(17)	0.67468(16)	0.45184(12)	0.0645(4)
C1	0.40847(18)	0.18307(19)	0.01344(14)	0.0443(3)
C2	0.2608(2)	0.0697(3)	0.00242(18)	0.0657(5)
C3	0.1830(2)	0.0688(3)	0.1055(2)	0.0767(6)
C4	0.2509(2)	0.1792(3)	0.21932(19)	0.0648(5)
C5	0.3987(2)	0.2875(2)	0.23254(17)	0.0576(4)

	x/a	y/b	z/c	U(eq)
C6	0.4764(2)	0.2898(2)	0.13057(15)	0.0491(4)
C7	0.48993(17)	0.19430(18)	0.90376(13)	0.0410(3)
C8	0.58789(18)	0.34361(18)	0.89676(14)	0.0441(3)
C9	0.66221(18)	0.35717(17)	0.79465(14)	0.0430(3)
C10	0.64191(17)	0.22282(17)	0.69378(13)	0.0401(3)
C11	0.54265(18)	0.07392(18)	0.70035(14)	0.0458(4)
C12	0.46949(18)	0.06017(18)	0.80347(15)	0.0460(4)
C13	0.72158(17)	0.24327(17)	0.58436(13)	0.0398(3)
C14	0.72101(17)	0.36770(17)	0.53553(13)	0.0406(3)
C15	0.79482(17)	0.38730(17)	0.43332(13)	0.0396(3)
C16	0.86867(17)	0.28085(18)	0.38110(13)	0.0428(3)
C17	0.87666(18)	0.15912(18)	0.42745(14)	0.0466(4)
C18	0.80221(18)	0.14243(17)	0.52934(14)	0.0434(3)
C19	0.81457(17)	0.49504(17)	0.35706(13)	0.0422(3)
C20	0.89531(18)	0.4431(2)	0.26337(15)	0.0475(4)
C21	0.7716(2)	0.62749(19)	0.35875(15)	0.0488(4)
C22	0.8079(2)	0.6996(2)	0.26531(17)	0.0583(4)
C23	0.8869(2)	0.6428(2)	0.17307(17)	0.0639(5)
C24	0.9327(2)	0.5129(2)	0.16951(16)	0.0599(5)

Table 4. Bond lengths (Å) for compound 7d.

O1-C16	1.3850(18)	O1-C20	1.386(2)
O2-C18	1.3775(18)	O3-C21	1.363(2)
C1-C2	1.389(2)	C1-C6	1.389(2)
C1-C7	1.485(2)	C2-C3	1.394(3)
C3-C4	1.373(3)	C4-C5	1.367(3)

C5-C6	1.384(2)	C7-C12	1.389(2)
C7-C8	1.397(2)	C8-C9	1.379(2)
C9-C10	1.394(2)	C10-C11	1.397(2)
C10-C13	1.487(2)	C11-C12	1.384(2)
C13-C14	1.394(2)	C13-C18	1.409(2)
C14-C15	1.387(2)	C15-C16	1.392(2)
C15-C19	1.447(2)	C16-C17	1.373(2)
C17-C18	1.382(2)	C19-C20	1.392(2)
C19-C21	1.393(2)	C20-C24	1.376(2)
C21-C22	1.383(2)	C22-C23	1.385(3)
C23-C24	1.383(3)		

Table 5. Bond angles (°) for compound **7d.**

C16-O1-C20	105.61(11)	C2-C1-C6	117.69(15)
C2-C1-C7	121.59(15)	C6-C1-C7	120.69(14)
C1-C2-C3	120.29(19)	C4-C3-C2	120.75(18)
C5-C4-C3	119.54(17)	C4-C5-C6	120.05(18)
C5-C6-C1	121.60(16)	C12-C7-C8	117.39(14)
C12-C7-C1	122.21(14)	C8-C7-C1	120.38(13)
C9-C8-C7	121.33(14)	C8-C9-C10	121.44(14)
C9-C10-C11	117.15(13)	C9-C10-C13	119.70(13)
C11-C10-C13	123.12(13)	C12-C11-C10	121.36(14)
C11-C12-C7	121.32(14)	C14-C13-C18	118.24(13)
C14-C13-C10	119.82(13)	C18-C13-C10	121.92(13)
C15-C14-C13	120.13(13)	C14-C15-C16	118.80(13)

C14-C15-C19	135.75(14)	C16-C15-C19	105.42(13)
C17-C16-O1	124.82(13)	C17-C16-C15	123.53(14)
O1-C16-C15	111.65(13)	C16-C17-C18	116.41(13)
O2-C18-C17	115.75(13)	O2-C18-C13	121.42(14)
C17-C18-C13	122.84(14)	C20-C19-C21	118.78(14)
C20-C19-C15	106.26(13)	C21-C19-C15	134.96(14)
C24-C20-O1	125.16(16)	C24-C20-C19	123.79(17)
O1-C20-C19	111.05(13)	O3-C21-C22	124.41(16)
O3-C21-C19	117.08(14)	C22-C21-C19	118.49(16)
C21-C22-C23	120.78(17)	C24-C23-C22	122.18(17)
C20-C24-C23	115.96(17)		

Table 6. Anisotropic atomic displacement parameters ($Å^2$) for compound **7d.**

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U11	U_{22}	U33	U_{23}	U13	U12
01	0.0554(7)	0.0589(7)	0.0463(6)	0.0158(5)	0.0179(5)	0.0262(5)
O2	0.0807(9)	0.0507(7)	0.0633(8)	0.0250(6)	0.0223(7)	0.0387(6)
O3	0.0964(10)	0.0494(7)	0.0627(8)	0.0213(6)	0.0263(7)	0.0392(7)
C1	0.0435(8)	0.0481(8)	0.0479(8)	0.0214(7)	0.0088(6)	0.0188(7)
C2	0.0505(10)	0.0807(13)	0.0583(11)	0.0283(10)	0.0064(8)	0.0076(9)
C3	0.0501(10)	0.1005(17)	0.0845(15)	0.0502(13)	0.0193(10)	0.0140(11)
C4	0.0701(12)	0.0864(14)	0.0662(12)	0.0451(11)	0.0313(10)	0.0433(11)
C5	0.0736(12)	0.0605(10)	0.0529(10)	0.0235(8)	0.0222(9)	0.0349(9)
C6	0.0539(9)	0.0483(9)	0.0487(9)	0.0162(7)	0.0134(7)	0.0203(7)
C7	0.0402(7)	0.0433(8)	0.0414(8)	0.0150(6)	0.0041(6)	0.0158(6)

	U11	U22	U33	U23	U 13	U12
C8	0.0501(8)	0.0374(7)	0.0434(8)	0.0083(6)	0.0095(6)	0.0161(6)
C9	0.0488(8)	0.0343(7)	0.0454(8)	0.0121(6)	0.0098(6)	0.0133(6)
C10	0.0442(8)	0.0394(7)	0.0389(7)	0.0121(6)	0.0048(6)	0.0174(6)
C11	0.0545(9)	0.0361(7)	0.0413(8)	0.0060(6)	0.0032(7)	0.0137(6)
C12	0.0474(8)	0.0369(7)	0.0492(9)	0.0144(6)	0.0029(7)	0.0082(6)
C13	0.0458(8)	0.0355(7)	0.0366(7)	0.0071(6)	0.0054(6)	0.0152(6)
C14	0.0488(8)	0.0374(7)	0.0380(7)	0.0084(6)	0.0080(6)	0.0203(6)
C15	0.0434(8)	0.0368(7)	0.0371(7)	0.0082(6)	0.0051(6)	0.0146(6)
C16	0.0427(8)	0.0448(8)	0.0383(7)	0.0084(6)	0.0072(6)	0.0150(6)
C17	0.0506(9)	0.0434(8)	0.0485(9)	0.0079(7)	0.0098(7)	0.0241(7)
C18	0.0500(8)	0.0365(7)	0.0450(8)	0.0100(6)	0.0049(6)	0.0188(6)
C19	0.0455(8)	0.0404(7)	0.0372(7)	0.0107(6)	0.0037(6)	0.0117(6)
C20	0.0461(8)	0.0507(9)	0.0426(8)	0.0133(7)	0.0057(6)	0.0138(7)
C21	0.0566(9)	0.0415(8)	0.0452(8)	0.0127(6)	0.0052(7)	0.0141(7)
C22	0.0696(11)	0.0483(9)	0.0551(10)	0.0225(8)	0.0016(9)	0.0141(8)
C23	0.0692(12)	0.0662(12)	0.0536(10)	0.0311(9)	0.0083(9)	0.0101(9)
C24	0.0586(10)	0.0743(12)	0.0476(9)	0.0241(9)	0.0159(8)	0.0185(9)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for compound **7d.**

	x/a	y/b	z/c	U(eq)
H1	0.775(3)	0.024(3)	0.644(2)	0.088000
H1B	0.704(3)	0.776(3)	0.465(2)	0.097000
H2	0.2135	-0.0060	0.9259	0.079000
H3	0.0840	-0.0075	1.0971	0.092000
H4	0.1968	0.1803	1.2869	0.078000
H5	0.4470	0.3596	1.3101	0.069000

	x/a	y/b	z/c	U(eq)
H6	0.5766	0.3645	1.1407	0.059000
H8	0.6033	0.4357	0.9623	0.053000
Н9	0.7273	0.4581	0.7930	0.052000
H11	0.5254	-0.0179	0.6341	0.055000
H12	0.4054	-0.0409	0.8056	0.055000
H14	0.6710	0.4377	0.5716	0.049000
H17	0.9293	0.0915	0.3922	0.056000
H22	0.7789	0.7873	0.2644	0.070000
H23	0.9098	0.6938	0.1115	0.077000
H24	0.9857	0.4749	0.1074	0.072000

Crystal Structure Report for compound 23

CCDC NUMBER: 2247453

A specimen of $C_{21}H_{16}O_3$ was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda = 0.71073$ Å).

The integration of the data using a monoclinic unit cell yielded a total of 28657 reflections to a maximum θ angle of 28.34° (0.75 Å resolution), of which 3966 were independent (average redundancy 7.226, completeness = 99.2%, $R_{int} = 4.84\%$, $R_{sig} = 3.81\%$) and 2476 (62.43%) were greater than $2\sigma(F^2)$. The final cell constants of a = 10.4864(11) Å, b = 10.0490(9) Å, c = 15.2051(13) Å, β

of $\underline{a} = 10.4864(11)$ Å, $\underline{b} = 10.0490(9)$ Å, $\underline{c} = 15.2051(13)$ Å, $\beta = 89.824(3)$ °, volume = 1602.3(3) Å³, are based upon the refinement of the XYZ-centroids of reflections above 20 σ (I). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6532 and 0.7457.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/n 1, with Z = 4 for the formula unit, $C_{21}H_{16}O_3$. The final anisotropic full-matrix least-squares refinement on F² with 218 variables converged at R1 = 5.51%, for the observed data and wR2 = 15.20% for all data. The goodness-of-fit was 1.026. The largest peak in the final difference electron density synthesis was 0.352 e⁻/Å³ and the largest hole was -0.245 e⁻/Å³ with an RMS deviation of 0.037 e⁻/Å³. On the basis of the final model, the calculated density was 1.311 g/cm³ and F (000), 664 e⁻.

Table 1. Sample and crystal data for compound 23.

Identification code	workSA_167
Chemical formula	$C_{21}H_{16}O_3$
Formula weight	316.34 g/mol
Temperature	300(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic

Space group	P 1 21/n 1	
Unit cell dimensions	a = 10.4864(11) Å	$\alpha = 90^{\circ}$
	b = 10.0490(9) Å	$\beta = 89.824(3)^{\circ}$
	c = 15.2051(13) Å	$\gamma=90^\circ$
Volume	1602.3(3) Å ³	
Z	4	
Density (calculated)	1.311 g/cm ³	
Absorption coefficient	0.087 mm ⁻¹	
F (000)	664	

Table 2. Data collection and structure refinement for compound 23.

Theta range for data collection	2.43 to 28.34°	
Index ranges	-13<=h<=13, -13<=k	<=11, -20<=l<=20
Reflections collected	28657	
Independent reflections	3966 [R(int) = 0.0484	4]
Max. and min. transmission	0.7457 and 0.6532	
Structure solution technique	direct methods	
Structure solution program	SHELXT 2018/2 (Sh	eldrick, 2018)
Refinement method	Full-matrix least-squa	ares on F ²
Refinement program	SHELXL-2018/3 (Sh	eldrick, 2018)
Function minimized	$\Sigma \text{ w} (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3966 / 0 / 218	
Goodness-of-fit on F ²	1.026	
Final R indices	2476 data; I>2σ(I)	R1 = 0.0551, wR2 = 0.1238

	all data	R1 = 0.1002, wR2 = 0.1520
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})$ +(0) where P=(F_{o}^{2} +2)	0.0557P) ² +0.6585P] Fc ²)/3
Largest diff. peak and hole	0.352 and -0.245	5 eÅ ⁻³
R.M.S. deviation from mean	0.037 eÅ ⁻³	

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters $(Å^2)$ for compound **23.**

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
01	0.54921(13)	0.41774(12)	0.86596(8)	0.0483(4)
O2	0.59766(17)	0.13335(13)	0.73541(10)	0.0667(5)
03	0.61266(14)	0.72382(12)	0.64072(8)	0.0511(4)
C1	0.7087(2)	0.2540(2)	0.46295(14)	0.0576(5)
C2	0.7445(2)	0.2038(2)	0.38214(15)	0.0642(6)
C3	0.7585(2)	0.2863(3)	0.31159(14)	0.0668(6)
C4	0.7379(2)	0.4188(3)	0.32103(15)	0.0729(7)
C5	0.7015(2)	0.4705(2)	0.40126(15)	0.0632(6)
C6	0.64507(19)	0.4501(2)	0.55805(13)	0.0517(5)
C7	0.63714(19)	0.3884(2)	0.63337(12)	0.0489(5)
C8	0.59973(17)	0.43682(17)	0.72008(11)	0.0398(4)
C9	0.58096(18)	0.35099(17)	0.78961(11)	0.0428(4)
C10	0.54565(19)	0.54943(17)	0.84438(12)	0.0451(4)
C11	0.68609(18)	0.3899(2)	0.47381(12)	0.0490(5)
C12	0.57737(17)	0.56882(16)	0.75594(11)	0.0390(4)
C13	0.58656(19)	0.20557(18)	0.79945(12)	0.0467(5)

	x/a	y/b	z/c	U(eq)
C14	0.5130(2)	0.6475(2)	0.90390(14)	0.0620(6)
C15	0.5152(2)	0.7752(2)	0.87138(14)	0.0640(6)
C16	0.5489(2)	0.80259(19)	0.78472(13)	0.0539(5)
C17	0.57943(18)	0.70199(17)	0.72679(11)	0.0420(4)
C18	0.5771(2)	0.15078(19)	0.89081(13)	0.0552(5)
C19	0.6030(2)	0.85757(18)	0.60893(13)	0.0512(5)
C20	0.6204(3)	0.8541(2)	0.51437(15)	0.0655(6)
C21	0.6270(4)	0.8533(3)	0.43821(18)	0.1097(12)

Table 4. Bond lengths (Å) for compound 23.

O1-C10	1.364(2)	01-C9	1.381(2)
O2-C13	1.220(2)	O3-C17	1.371(2)
O3-C19	1.432(2)	C1-C2	1.379(3)
C1-C11	1.396(3)	C2-C3	1.363(3)
C3-C4	1.357(4)	C4-C5	1.378(3)
C5-C11	1.378(3)	C6-C7	1.305(3)
C6-C11	1.479(3)	C7-C8	1.458(2)
C8-C9	1.378(2)	C8-C12	1.453(2)
C9-C13	1.470(3)	C10-C14	1.380(3)
C10-C12	1.398(2)	C12-C17	1.410(2)
C13-C18	1.497(3)	C14-C15	1.375(3)
C15-C16	1.391(3)	C16-C17	1.378(3)
C19-C20	1.449(3)	C20-C21	1.160(3)

Table 5. Bond angles (°) for 23.

C10-O1-C9	106.01(13)	C17-O3-C19	117.03(14)
C2-C1-C11	120.6(2)	C3-C2-C1	120.5(2)

C4-C3-C2	119.8(2)	C3-C4-C5	120.5(2)
C11-C5-C4	121.2(2)	C7-C6-C11	125.67(19)
C6-C7-C8	130.65(19)	C9-C8-C12	105.13(15)
C9-C8-C7	121.49(16)	C12-C8-C7	133.36(16)
C8-C9-O1	111.99(15)	C8-C9-C13	133.99(16)
01-C9-C13	114.01(15)	O1-C10-C14	122.83(17)
O1-C10-C12	111.10(15)	C14-C10-C12	126.07(17)
C5-C11-C1	117.47(19)	C5-C11-C6	119.1(2)
C1-C11-C6	123.47(19)	C10-C12-C17	115.98(15)
C10-C12-C8	105.75(15)	C17-C12-C8	138.27(16)
O2-C13-C9	120.93(17)	O2-C13-C18	121.86(17)
C9-C13-C18	117.21(16)	C15-C14-C10	115.27(18)
C14-C15-C16	121.95(19)	C17-C16-C15	121.22(18)
O3-C17-C16	123.41(16)	O3-C17-C12	117.10(15)
C16-C17-C12	119.48(16)	O3-C19-C20	107.68(16)
C21-C20-C19	176.1(3)		

Table 6. Anisotropic atomic displacement parameters ($Å^2$) for compound **23**.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U11	U22	U33	U23	U13	U12
01	0.0746(9)	0.0298(7)	0.0404(7)	0.0001(5)	0.0093(6)	-0.0021(6)
O2	0.1106(13)	0.0347(8)	0.0548(9)	-0.0059(6)	0.0114(8)	0.0001(8)
03	0.0794(10)	0.0312(7)	0.0427(7)	0.0043(5)	0.0101(6)	0.0033(6)
C1	0.0676(14)	0.0556(13)	0.0496(11)	0.0030(10)	0.0074(10)	0.0069(10)
C2	0.0708(15)	0.0549(13)	0.0668(15)	0.0151(11)	0.0108(11)	0.0022(11)
C3	0.0716(15)	0.0842(18)	0.0445(12)	0.0124(11)	0.0106(10)	0.0030(13)
C4	0.0862(17)	0.0832(19)	0.0493(13)	0.0124(12)	0.0064(12)	0.0031(14)

	U 11	U22	U33	U23	U13	U12
C5	0.0748(15)	0.0540(13)	0.0609(13)	0.0031(11)	0.0011(11)	0.0063(11)
C6	0.0615(13)	0.0431(11)	0.0503(11)	-0.0033(9)	0.0025(9)	0.0021(9)
C7	0.0584(12)	0.0449(11)	0.0434(10)	-0.0017(8)	0.0040(9)	-0.0011(9)
C8	0.0461(10)	0.0327(9)	0.0405(9)	-0.0018(7)	0.0014(7)	-0.0009(7)
C9	0.0561(11)	0.0341(9)	0.0380(9)	-0.0027(7)	0.0051(8)	0.0002(8)
C10	0.0621(12)	0.0305(9)	0.0427(10)	0.0006(7)	0.0053(8)	-0.0041(8)
C11	0.0482(11)	0.0539(12)	0.0449(10)	-0.0095(9)	0.0021(8)	-0.0035(9)
C12	0.0464(10)	0.0310(9)	0.0396(9)	-0.0008(7)	0.0011(7)	-0.0026(7)
C13	0.0575(12)	0.0334(9)	0.0491(11)	0.0000(8)	0.0045(9)	-0.0004(8)
C14	0.1024(18)	0.0387(11)	0.0447(11)	-0.0039(9)	0.0161(11)	0.0035(11)
C15	0.1067(18)	0.0367(11)	0.0487(12)	-0.0083(9)	0.0143(11)	0.0003(11)
C16	0.0798(14)	0.0312(10)	0.0506(11)	-0.0008(8)	0.0046(10)	-0.0031(9)
C17	0.0527(11)	0.0342(9)	0.0392(9)	0.0004(7)	0.0021(8)	-0.0022(8)
C18	0.0735(14)	0.0362(10)	0.0558(12)	0.0084(9)	0.0036(10)	0.0026(9)
C19	0.0691(13)	0.0339(10)	0.0506(11)	0.0085(8)	0.0029(9)	0.0011(9)
C20	0.1013(18)	0.0404(11)	0.0546(13)	0.0103(10)	0.0102(12)	0.0043(11)
C21	0.212(4)	0.0624(17)	0.0546(16)	0.0123(13)	0.0290(19)	0.014(2)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for compound **23.**

	x/a	y/b	z/c	U(eq)
H1	0.6994	0.1967	0.5106	0.069000
H2	0.7593	0.1131	0.3757	0.077000
Н3	0.7821	0.2518	0.2572	0.080000
H4	0.7484	0.4752	0.2730	0.087000
Н5	0.6871	0.5615	0.4065	0.076000

	x/a	y/b	z/c	U(eq)
H6	0.6230	0.5397	0.5573	0.062000
H7	0.6590	0.2988	0.6314	0.059000
H14	0.4912	0.6286	0.9619	0.074000
H15	0.4934	0.8453	0.9084	0.077000
H16	0.5510	0.8904	0.7655	0.065000
H18A	0.6306	0.2016	0.9293	0.083000
H18B	0.6043	0.0596	0.8909	0.083000
H18C	0.4903	0.1560	0.9108	0.083000
H19A	0.6679	0.9129	0.6358	0.061000
H19B	0.5200	0.8943	0.6234	0.061000
H21	0.6324	0.8527	0.3772	0.132000