Impact of N-donor auxiliary ligands on three new Co(II)-based coordination polymers with symmetrical tetracarboxylate ligands: magnetism study

Xiaoyu Zhang^a, Tianrui Qin^a, Ruifang Xiang^a, Xiuyan Dong^{a,*}, Hiroshi Sakiyama^{b,*}, Mohd. Muddassir^c, and Ying Pan^{d,*} ^aSchool of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China ^bDepartment of Science, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan ^cDepartment of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia ^dThe First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China ^{*}Email: dongxy@mail.lzjtu.cn; saki@sci.kj.yamagata-u.ac.jp and panying@gdmu.edu.cn

Correspondence: Xiuyan Dong, School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China.

Email: dongxy@mail.lzjtu.cn

Contents

Figure S1. The coordination modes of L in 1-3.

Figure S2. Simulated and observed PXRD patterns of CPs 1-3.

Figure S3. Infrared spectra of CPs 1-3.

Figure S4. The TG curves of CPs 1-3.

Table S1. Crystal data and structure refinement for CPs 1-3.

Table S2. Selected Bond Lengths (Å) and angles (°) for CPs 1-3.

Figure S1. The coordination modes of L in 1-3.

Figure S2. Simulated and observed PXRD patterns of CPs 1-3.

Figure S3. Infrared spectra of CPs 1-3.

Figure S4. The TG curves of CPs 1-3.

Table S1.	Crystal	data and	structure	refinement	for	CPs :	1-3
-----------	---------	----------	-----------	------------	-----	-------	-----

Complex	1	2	3
Empirical formula	$C_{18}H_{10}CoO_8$	$C_{39}H_{28}CoN_2O_{14}$	$C_{37}H_{26}Co_2N_4O_{14}\\$
Formula weight	413.19	807.56	868.48
Temperature (K)	298	293	296

Wavelength (Å)	1.54184	1.54184	0.710730
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$P2_{1}/c$	$P\bar{1}$	$P\bar{1}$
Unit cell dimension			
<i>a</i> (Å)	4.4234(2)	11.6020(7)	8.0125(7)
<i>b</i> (Å)	13.3689(5)	12.0259(8)	9.6714(8)
<i>c</i> (Å)	13.1637(5)	14.2958(9)	13.1079(11)
α (°)	90	68.618(6)	109.886(2)
eta (°)	90.391(3)	66.501(6)	90.701(3)
γ (°)	90	88.714(5)	112.409(3)
$V(Å^3)$	778.43(5)	1685.6(2)	871.22(13)
Ζ	2	2	1
D_{calc} (Mg m ⁻³)	1.763	1.591	1.655
$\mu \ (\mathrm{mm}^{-1})$	9.11	4.69	1.03
F(000)	418	830	442
Crystal size (mm)	$0.07 \times 0.05 \times 0.04$	$0.12 \times 0.12 \times 0.11$	$0.08 \times 0.06 \times 0.03$
θ range (°)	4.7 to 75.1	3.7 to 71.1	2.4 to 27.5
Index ranges	$-3 \le h \le 5,$	$-12 \le h \le 13,$	$-8 \le h \le 10,$
	$-15 \le k \le 15,$	$-13 \le k \le 14,$	$-12 \le k \le 11,$
	$-15 \le l \le 15$	$-17 \le l \le 17$	$-16 \le l \le 17$
Reflections collected	4196	10881	7684
Independent reflection	1369 [$R_{int} = 0.043$]	$6027 [R_{int} = 0.037]$	3949 [$R_{int} = 0.026$]
Data/restraints/parameters	1369/0/125	6027/156/509	3949/140/309
Final R_1 , wR_2 indices	0.037, 0.096	0.058, 0.147	0.041,0.104
$[I > 2\sigma(I)]$			
R_1 , wR_2 indices (all data)	0.049, 0.101	0.029, 0.157	0.049,0.111
GOF	1.05	1.10	1.02
$\Delta \rho_{ m max,min}$ (e Å ⁻³)	0.42/-0.60	1.01/-0.60	0.78/-0.75

Table S2. Selected Bond Ler	gths (Å) and	l angles (°)	for CPs 1-3	; .
-------------------------------------	--------------	--------------	--------------------	------------

G	OF	1.05	1.10		1.02
$__\Delta ho_{max,mi}$	$(e Å^{-3})$	0.42/-0.60	1.01/-0.0	60 0.	78/-0.75
Tabla S	2 Calcated	Dand Lanath	(Å) and an	-1 (°) f (
I able S	2. Selected	Bond Lengtr	is (A) and ang	$\frac{1}{2} = \frac{1}{2} $	_PS 1-3 .
Complex 1					
Co1—O1#1	2.1464 (17)	Co1—O2#3	2.0433 (18)	Co1—O3#4	2.0974 (18)
Co1—O1#2	2.1464 (18)	Co1—O2	2.0432 (18)	Co1—O3#5	2.0974 (18)
O1#2—Co	o1—O1#1	180.0	O2—Co1-	—O3#4	94.57 (8)
O2#3—Co	o1—O1#1	92.93 (7)	O2#3—Co3	1—03#4	85.43 (8)
$O_2 C_{c1}$	01#2	02 02 (7)	$O^{2\#4}$ C^{2}	1 01#1	<u> </u>

O2—Co1—O1#1	87.07 (7)	O3#5—Co1—O1#2	88.18 (7)
O2#3—Co1—O1#2	87.07 (7)	O3#5—Co1—O1#1	91.82 (7)
O2—Co1—O2#3	180.0	O3#4—Co1—O1#2	91.82 (7)
O2#3—Co1—O3#5	94.57 (8)	O3#4—Co1—O3#5	180.0
O2—Co1—O3#5	85.43 (8)		

Symmetry codes for #1 -x, y+1/2, -z+1/2; #2 x, -y+3/2, z+1/2; #3 -x, -y+2, -z+1; #4 -x+1, -y+2, -z+1; #5 x-1, y, z; #6 -x, y-1/2, -z+1/2; #7 x+1, y, z; #8 -x+2, -y+1, -z+1.

Complex 2						
Co1—O14	2.048 (3)	Co1—O1#1	2.097 (3)	Co1—N1	2.144 (3)	
Co1—O2	2.051 (3)	Co1—N2	2.100 (3)	Co1—O13	2.288 (3)	
014—C	o1—O2	95.62 (11)	O1#1—Co1—N1		86.40 (12)	
O14—Co	1—01#1	94.18 (12)	N2—Co1—N1		78.45 (11)	
O2—Co	l—O1#1	106.62 (12)	O14—Co1—O13		82.99 (12)	
014—C	o1—N2	173.26 (11)	O2—Co1—O13		77.53 (12)	
O2—Co	o1—N2	91.02 (11)	O1#1—Co1—O13		175.24 (11)	
01#1—0	Col—N2	85.03 (11)	N2—Co1—O13		97.33 (12)	
014—C	o1—N1	94.82 (11)	N1—Co	1—013	90.02 (12)	
O2—Co	o1—N1	162.62 (11)				

Symmetry codes for #1 -x+2, -y, -z+2; #2 -x+3, -y, -z+1.

Complex 3						
Co1—O1	2.0358(16)	Co1—O1W	2.095(2)	Co1—O3#2	2.1242(16)	
Co1—O2#1	2.0641(18)	Co1—N1	2.115(9)	Co1—O4#2	2.2736(18)	
01—Co2	1—O2#1	94.63(7)	O1W—Co	1—O3#2	88.10(8)	
01—Co	1—01W	81.12(8)	N1—Co1	—O3#2	93.0(3)	
O2#1—Co	o1—O1W	173.13(8)	01—Co1	—O4#2	88.11(6)	
01—Co	o1—N1	119.1(3)	O2#1—Co	1—04#2	90.86(7)	
O2#1—0	Col—N1	91.60(19)	O1W—Co	1—O4#2	94.37(9)	

O1W—Co1—N1	85.8(2)	N1—Co1—O4#2	152.3(3)
O1—Co1—O3#2	144.88(7)	O3#2—Co1—O4#2	59.34(6)
O2#1—Co1—O3#2	98.41(7)		

Symmetry codes for #1 -x+1, -y+1, -z+1; #2 x-1, y-1, z; #3 -x+2, -y+2, -z+2; #4 x+1, y+1, z.