Supporting Information

Field-Induced Magnetic Relaxation in Heteropolynuclear $\mathbf{L n}$ "II/Zn" Metal Organic Frameworks:

Cerium and Dysprosium Cases

Agustín López ${ }^{\text {a }}$, Carlos Cruz ${ }^{\text {b,c }}$, Verónica Paredes-García ${ }^{\text {b,c }}$, Nicolás Veiga ${ }^{\text {a }}$, Francesc Lloret ${ }^{\text {d }}$, Julia Torres ${ }^{\text {a }}$, Raúl Chiozzone ${ }^{\text {a,* }}$
a Universidad de la República, Facultad de Química, Área Química Inorgánica, Montevideo, Uruguay.
b Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Santiago, Chile.
c Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Chile.
d Universitat de València, Instituto de Ciencia Molecular (ICMoI), Valencia, Spain.

Keywords:
Cerium(III)-based single-molecule magnets
Ab initio computational calculations
Heteronuclear polycarboxylate-based metal-organic frameworks

Experimental

Synthesis of $\left[\mathrm{Ln}_{2} \underline{Z n}_{3} \text { (oda) }\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]_{6} \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{Ln}=\mathrm{Ce}(1), \mathrm{Gd}(3))$
$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{GdCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.125 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.188 \mathrm{mmol})$ dissolved in $1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ were mixed with 3 mL of an aqueous solution containing $0.375 \mathrm{mmol} \mathrm{H}_{2}$ oda at $\mathrm{pH}=7.0-7.5$. The resulting solution ($\mathrm{pH}=6.1-6.5$) was diffused with twice the volume of isopropanol. After some weeks, crystals of the desired complexes were obtained (Yield 20-30\%). Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{60} \mathrm{Ce}_{2} \mathrm{O}_{48} \mathrm{Zn}_{3}$: C, 18.1; $\mathrm{H}, 3.8$. Found: C, 18.3; $\mathrm{H}, 3.6$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{60} \mathrm{Gd}_{2} \mathrm{O}_{48} \mathrm{Zn}_{3}$: C, 17.7; $H, 3.7$. Found: $C, 17.8 ; H, 3.6$. Vibration modes $v_{a s}(C O O), v_{s}(C O O)$ and $v(C O C)$ of the free H_{2} oda at 1732,1419 and $1149 \mathrm{~cm}^{-1}$ shifted to 1606,1438 and $1126 \mathrm{~cm}^{-1}$ in both compounds. Synthesis of $\left[\mathrm{Dy}_{2} \mathrm{Zn}_{3}\right.$ (oda) $\left.6_{6}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)_{6}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (2a)
$\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.125 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.188 \mathrm{mmol})$ dissolved in $1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ were mixed with 3 mL of an aqueous solution containing $0.375 \mathrm{mmol}_{\mathrm{H}}$ oda at $\mathrm{pH}=7.0-7.5$. The resulting solution ($\mathrm{pH}=6.1-6.5$) was diffused with an equal volume of isopropanol. Crystals of $\mathbf{2 a}$ were obtained after some weeks (Yield 40-50\%). Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{68} \mathrm{Dy}_{2} \mathrm{O}_{52} \mathrm{Zn}_{3}$: C, 16.9; H, 4.0. Found: C, 17.0; $H, 3.9$. Vibration modes $\mathrm{v}_{\text {as }}(\mathrm{COO}), \mathrm{v}_{\mathrm{s}}(\mathrm{COO})$ and $\mathrm{v}(\mathrm{COC})$ at 1606,1438 and $1126 \mathrm{~cm}^{-1}$. Synthesis of $\left[\mathrm{Dy}_{2} \mathrm{Zn}_{3}(\text { oda })_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~b})$
$\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.125 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.188 \mathrm{mmol})$ dissolved in $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were mixed with 6 mL of an aqueous solution containing $0.375 \mathrm{mmol}_{\mathrm{H}_{2}}$ oda at $\mathrm{pH}=7.0-7.5$. The resulting solution ($\mathrm{pH}=6.1-6.5$) was diffused with an equal volume of acetone. Crystals of $\mathbf{2 b}$ were obtained after some weeks (Yield 40-50 \%). Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{Dy}_{2} \mathrm{O}_{39} \mathrm{Zn}_{3}: \mathrm{C}, 19.5 ; \mathrm{H}, 2.9$. Found: C, 19.7; $H, 3.1$. Vibration modes $v_{a s}(C O O), v_{s}(C O O)$ and $v(C O C)$ at 1606,1438 and $1131 \mathrm{~cm}^{-1}$.

Infrared spectra were recorded with a Shimadzu IR Prestige-21 FTIR spectrometer as KBr pellets in the 4000-400 cm^{-1} region. Elemental analyses for carbon, hydrogen and nitrogen were performed on a Thermo Flash 2000 analyzer.

Figure S1. Perspective view along the z-axis showing the hexagonal network and nanochannels in 2a. Color code: Dy green, Zn light blue, O red, C gray. Hydrogen atoms have been omitted for clarity.

Figure S2. Tilted neighbouring $\left[\mathrm{Dy}(\mathrm{oda})_{3}\right]^{3-}$ units in 2b. Color code: Dy green, Zn light blue, O red, C gray. Hydrogen atoms have been omitted for clarity. The slashed orange line indicates the shortest Dy…Dy distance.

Figure S3. View along the x-axis of the anionic network $\left[\left\{Z n D y(o d a)_{3}\right\}_{2}\right]^{2-}$ in $\mathbf{2 b}$. Color code: Dy green, Zn light blue, O red, C gray. Hydrogen atoms have been omitted for clarity.

Figure S4. Temperature dependence of $\chi_{M} T$ measured at a 1 kOe dc field for 3 . Inset: Field dependence of magnetization at 1.8, 3.0, 5.0 and 8.0 K .

Figure S5. Reduced magnetization for compound 1 measured at 2.0, 3.0, 5.0 and 8.0 K .

Figure S6. Temperature dependence of $\chi_{\mathrm{m}} T$ measured at a 5 kOe dc field for $\mathbf{2 b}$. At $300 \mathrm{~K}, \chi_{\mathrm{m}} T$ is $13.9 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$, very close to the expected $14.2 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ value. Upon cooling, $\chi_{\mathrm{M}} T$ decreases to $6.9 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ at 2 K . Inset: Reduced magnetization measured between 2.0 and 10 K in steps of 1 K . The magnetization at 2 K reaches the value of $5.5 \mu_{\mathrm{B}}$ at 50 kOe .

Figure S7. Static magnetic field dependence of the out-of-phase susceptibility of $\mathbf{1}$ at different frequencies of the oscillating ac field measured at 2.0 K . Lines serve only as a visual guide.

Figure S8. Temperature dependence of the ac susceptibility for $\mathbf{1}$ at static fields of 1 (top) and 2 kOe (bottom) at different frequencies between 100 and 10000 Hz . (left) in-phase components, (right) out-of phase components. Lines serve only as a visual guide.

Figure S9. Frequency dependence of $\chi_{\mathrm{M}}{ }^{\prime}$ and $\chi_{\mathrm{M}}{ }^{\prime \prime}$ at different temperatures for $\mathbf{1}$ under an external dc field of 1 kOe . The solid curves are theoretical calculations on the basis of the generalized Debye model. Temperature points for which a maximum is not observed were discarded.

Figure S10. Argand diagram of 1 between 2.0 K (blue) and 5.7 K (red) under a dc field of 1 kOe . Lines represent the best fits as calculated with the generalized Debye model.

Figure S11. Arrhenius plot for 1 measured under a 2 kOe external field. An effective barrier of $c a .13 \mathrm{~cm}^{-1}(19 \mathrm{~K})$ could be estimated from the slope of the red line as the Orbach contribution at the high temperature region.

Figure S12. Temperature dependence of the ac susceptibility for $\mathbf{2 a}$ at static fields of 1 (top) and 5 kOe (bottom) at different frequencies between 100 and 10000 Hz . (left) in-phase components, (right) out-of phase components. Lines serve only as a visual guide.

Figure S13. Temperature dependence of the $a c$ susceptibility for $\mathbf{2 b}$ at static fields of 1 (top), 2.5 (middle) and 5 kOe (bottom) at different frequencies between 100 and 10000 Hz . (left) inphase components, (right) out-of phase components. Lines serve only as a visual guide.

Figure S14. Frequency dependence of $\chi_{M^{\prime}}$ (left) and $\chi_{M}{ }^{\prime \prime}$ (right) at different temperatures for 2a under an external $d c$ field of 1 (top), 2.5 (middle) and 5 kOe (bottom). Lines serve only as a visual guide.

Figure S15. Frequency dependence of $\chi_{M}{ }^{\prime}$ (left) and $\chi_{M}{ }^{\prime \prime}$ (right) at different temperatures for $\mathbf{2 b}$ under an external $d c$ field of 1 (top), 2.5 (middle) and 5 kOe (bottom). Lines serve only as a visual guide.

Figure S16. Argand diagrams of $\mathbf{2 a}$ (left) and $\mathbf{2 b}$ (right) under an external dc field of 1 (top), 2.5 (middle) and 5 kOe (bottom). Lines serve only as a visual guide.

Figure S17. Temperature dependence of $\chi_{M} T$ measured at a $5 \mathrm{kOe} d c$ field for 1 . Inset: Field dependence of magnetization at $2.0,3.0,5.0$ and 8.0 K . The solid lines are the result of the best fit with Phi v3.1.6 (see main text for details).

Table S1. Parameters obtained from fitting ac susceptibility data of $\mathbf{1}$ to the generalized Debye model.

Field (Oe)	Temperature (K)	τ (s)	α
1000	2.00	$2.71(1) \times 10^{-4}$	$5.5(3) \times 10^{-2}$
1000	2.33	$1.86(1) \times 10^{-4}$	$5.6(3) \times 10^{-2}$
1000	2.67	$1.349(4) \times 10^{-4}$	$5.5(2) \times 10^{-2}$
1000	3.00	$1.001(5) \times 10^{-4}$	$4.8(3) \times 10^{-2}$
1000	3.33	$7.69(5) \times 10^{-5}$	$5.9(4) \times 10^{-2}$
1000	3.67	$6.03(10) \times 10^{-5}$	$5.1(10) \times 10^{-2}$
1000	4.00	$4.83(4) \times 10^{-5}$	$4.1(5) \times 10^{-2}$
1000	4.33	$3.96(6) \times 10^{-5}$	$4.8(8) \times 10^{-2}$
1000	4.67	$3.13(8) \times 10^{-5}$	$5.8(13) \times 10^{-2}$
1000	5.00	$2.60(6) \times 10^{-5}$	$3.9(12) \times 10^{-2}$
1000	5.33	$2.18(10) \times 10^{-5}$	$0.0(23) \times 10^{-2}$
1000	5.67	$1.60(15) \times 10^{-5}$	$9.3(30) \times 10^{-2}$
2000	2.00	$3.02(2) \times 10^{-4}$	$5.8(4) \times 10^{-2}$
2000	2.33	$2.02(3) \times 10^{-4}$	$4.7(10) \times 10^{-2}$
2000	2.67	$1.45(1) \times 10^{-4}$	$5.7(7) \times 10^{-2}$
2000	3.00	$1.08(1) \times 10^{-4}$	$5.8(7) \times 10^{-2}$
2000	3.33	$8.18(8) \times 10^{-5}$	$5.8(7) \times 10^{-2}$
2000	3.67	$6.44(6) \times 10^{-5}$	$4.8(6) \times 10^{-2}$
2000	4.00	$5.12(5) \times 10^{-5}$	$6.4(6) \times 10^{-2}$
2000	4.33	$4.11(5) \times 10^{-5}$	$6.0(7) \times 10^{-2}$
2000	4.67	$3.32(3) \times 10^{-5}$	$5.2(5) \times 10^{-2}$
2000	5.00	$2.74(7) \times 10^{-5}$	$5.0(13) \times 10^{-2}$
2000	5.33	$2.26(10) \times 10^{-5}$	$4.2(21) \times 10^{-2}$
2000	5.67	$1.83(4) \times 10^{-5}$	$4.8(9) \times 10^{-2}$

Table S2. QDPT/NEVPT2 calculated energies of Kramer doublets for $\mathbf{1}$ and main values of g tensors in the three low-lying ones, calculated within the pseudo-spin $S=1 / 2$ formalism. The angle θ is the deviation from the principal magnetization axes of the first KD.

KD	Energy $\left(\mathrm{cm}^{-1}\right)$	g_{x}	g_{y}	g_{z}	$\theta\left({ }^{\circ}\right)$
1	0.00	1.36865366	1.36789400	1.16249558	0
2	326.56	0.00572583	0.01677303	2.48956662	0.254
3	352.30	0.90157458	0.93482552	2.00724107	0.482
4	2287.92				
5	2635.55				
6	2701.48				
7	2903.34				

Table S3. Decomposition of the wave functions corresponding to the lowest atomic multiplet J $=5 / 2$ in wave functions with a definite projection of the total moment on the quantization axis.

KD	ab initio state	$\|-5 / 2\rangle$	$\|-3 / 2\rangle$	$\|-1 / 2\rangle$	$\|+1 / 2\rangle$	$\|+3 / 2\rangle$	$\|+5 / 2\rangle$
1	1	0.6%	0.0%	57.7%	0.9%	0.0%	40.9%
	2	40.9%	0.0%	0.9%	57.7%	0.0%	0.6%
2	3	0.0%	6.7%	0.0%	0.0%	93.3%	0.0%
	4	0.0%	93.3%	0.0%	0.0%	6.7%	0.0%
3	5	20.1%	0.0%	27.3%	14.2%	0.0%	38.5%
	6	38.5%	0.0%	14.2%	27.3%	0.0%	20.1%

Table S4. SINGLE_ANISO computed crystal field parameters of the ground atomic multiplet $J=$ $5 / 2$ in 1.

k	q	B_{k}^{q}
2	-2	$-0.30417664197378 \mathrm{E}-01$
2	-1	$-0.26528268569014 \mathrm{E}-01$
2	0	$0.14359177891502 \mathrm{E}+01$
2	1	$0.26858208726643 \mathrm{E}-01$
2	2	$-0.14972726313285 \mathrm{E}-01$
4	-4	$-0.65467223074955 \mathrm{E}-02$
4	-3	$-0.12017178266198 \mathrm{E}+02$
4	-2	$0.22593186864573 \mathrm{E}-01$
4	-1	$0.13692029081035 \mathrm{E}-01$
4	0	$-0.57300658281820 \mathrm{E}+00$
4	1	$-0.28664792558835 \mathrm{E}-01$
4	2	$0.98881904610775 \mathrm{E}-02$
4	3	$-0.13793728367234 \mathrm{E}+02$
4	4	$-0.22885897020968 \mathrm{E}-01$

Table S5. Matrix elements between states with opposite magnetization and between states arising from neighboring multiplets.

Matrix element	Average value
$<1.1+\|\mu\| 1.1->$	$0.456091276514 \mathrm{E}+00$
$<2.1+\|\mu\| 2.1->$	$0.417215487510 \mathrm{E}-02$
$<3.1+\|\mu\| 3.1->$	$0.306119244444 \mathrm{E}+00$
$<1.1+\|\mu\| 2.1+>$	$0.347639702184 \mathrm{E}+00$
$<1.1+\|\mu\| 2.1->$	$0.613561757275 \mathrm{E}+00$
$<2.1+\|\mu\| 3.1+>$	$0.534891866073 \mathrm{E}+00$
$<2.1+\|\mu\| 3.1->$	$0.467820544305 \mathrm{E}+00$
$<1.1+\|\mu\| 3.1+>$	$0.409844855629 \mathrm{E}+00$
$<1.1+\|\mu\| 3.1->$	$0.446178822536 \mathrm{E}+00$

