Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

ESI file for

Reactive adsorption of NO² over NaCoO2-Co3O⁴ nanocomposite: Experimental study and first-principles calculations

Nishesh Kumar Gupta^{a, b, 1}, Kaptan Rajput^{c, d, 1}, Bijal R. Mehta^c, Herlys Viltres^e, Debesh R. Roy^c, Kwang Soo Kima,b*

Section 1: Synthesis of (Na,Co)-BTC MOF

The MOF was prepared by sonicating (Sonics Vibra-cell 500 W, 20 kHz, 44% amplitude) freshly prepared cobalt hydroxide with H₃BTC solution (0.21 mol L⁻¹ in DMF). Cobalt hydroxide was prepared by adding 82.5 mL of methanolic NaOH solution $(1.30 \text{ mol } L^{-1})$ in 75 mL of $Co(NO₃)₂·6H₂O$ salt solution in DMF (0.55 mol L⁻¹).

Section 2: Analytical instruments

The surface morphology was probed by a Hitachi S-4300 field emission scanning electron microscope (FE-SEM, Japan). The dried samples were coated with Au-Pt alloy using an E-1048 Hitachi ion sputter to improve the signal-to-noise ratio. The 2D elemental mapping was performed on an X-Maxn 80 T energy-dispersive X-ray spectroscope (Oxford, United Kingdom). Fouriertransform infrared (FTIR) spectra were recorded on a Cary670 FTIR spectrometer. Powder X-ray diffraction (PXRD) patterns were recorded at 25 °C on an Ultima IV X-ray diffractometer (Rigaku, Japan) with Cu K α radiation ($\lambda = 1.5406$ Å) and a Ni filter. Thermal gravimetric analysis (TGA) of MOF was performed on a TG 209 F3 Thermogravimetric Analyzer (NETZSCH, Germany). N_2 adsorption-desorption measurements were conducted on Quantachrome Instruments v10.0 (Florida, United States) after degassing samples at 120 °C for 6 h. The chemical states of constituent elements were analyzed using an X-ray photoelectron spectrometer (XPS, Nexsa spectrometer system, Thermo Scientific, United Kingdom) focused with Al Kα monochromator (1486.6 eV). Spectra were charge corrected to the main line of the C 1s spectrum (aromatic carbon) set to 284.7 eV. Spectra were analyzed using CasaXPS software (version 2.3.14) with $GL(p)$ = Gaussian/Lorentzian product formula, where the mixing is determined by $m = p/100$, GL(100) is a pure Lorentzian, and GL(0) is a pure Gaussian. We have used GL(30) in this study.

Section 3: DFT calculations

A spin-polarized density functional theory (DFT) 1,2 investigation was conducted to study the bare and $NO₂$ gas molecule adsorbed $Co₃O₄$ and $NaCoO₂$ surface by utilizing the Vienna ab initio simulation package (VASP)³. VASP package incorporates the projector augmented wave (PAW) and generalized gradient approximation (GGA) methods to properly include the interactions between ions and electrons ^{4,5}. For all the structural and electronic properties calculations, cutoff energy of 500 eV, and the Brillouin-zone integration using a Monkhorst-Pack scheme 6 with a 5 \times 5×1 k-point grid was considered. We enforced the convergence criteria for the total energy and atomic forces as 10^{-4} eV and 0.02 eV/Å, respectively. To describe the adsorption of the NO₂ gas molecules on the $Co₃O₄$ and $NaCoO₂$ surface accurately, we considered the van der Waals

interaction using the DFT-D3 method ⁷. For the surface interaction study with $NO₂$ gas molecule on $Co₃O₄$ and NaCoO₂ surfaces and removing the interaction between the imaginary surfaces, we considered a 15 Å vacuum region in the Z direction. For the graphical representations, we considered the VESTA package 8 . The adsorption energy (E_{ad}) of the NO₂ gas molecule on the $Co₃O₄$ and NaCoO₂ surface is obtained from the following equation (1):

$$
E_{ad} = E_{\text{Surface}} + E_{NO_2} - E_{\text{Surface}} + NO_2 \quad (1)
$$

In the above equation, the initial three terms represent the ground state energy of the $Co₃O₄$ or $NaCoO₂$ surface, the ground state energy of the isolated gas molecules, and the ground state energy of the complex configuration for the $NO₂$ gas molecule, respectively. To obtain the donor and acceptor nature of the $NO₂$ gas molecule, we considered the Bader charge analysis 9 . The formulation for the charge density difference (Δ*ρ*) is reported as:

$$
\Delta \rho = \rho_{\text{Surface + NO}_2} - \rho_{NO_2} - \rho_{\text{Surface}} \quad (2)
$$

In the above equation, the first three terms on the right-hand side describe the charge density of the complex system, the charge density of the isolated gas molecules, and the charge density of the $Co₃O₄$ or NaCoO₂ surface, respectively.

References

- 1. P. Hohenberg, W. Kohn, Phys. Rev., 1964, 136, B864.
- 2. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.
- 3. G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- 4. P. E. Blöchl, Phys. Rev. B, 1994, 50 (24), 17953.
- 5. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77 (18), 3865.
- 6. H. J. Monkhorst, J. D. Pack Phys. Rev. B, 1976, 13 (12), 5188–5192.
- 7. S. Grimme, J. Comput. Chem., 2006, 27 (15), 1787–1799.
- 8. K. Momma, F. Izumi, J. Appl. Crystallogr., 2008, 41 (3), 653–658.
- 9. G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci., 2006, 36 (3), 354–360.

Figure S1. TGA profile of (Na,Co)-BTC.

				Element	Atomic %
	$5 -$	Co		С	3.4
cps/eV	- - - - $\overline{}$ ۰				0.0
			$1 \mu m$ Co	О	48.4
				Na	7.8
	$\overline{}$ -			Co	40.4
	$0 -$ 0		10	Total:	100.0

Figure S2. TEM-EDAX analysis of NaCoO.

Figure S3. (a) N₂ adsorption-desorption isotherm; (b) Pore size distribution of (Na,Co)-BTC.

Figure S4. N₂ adsorption-desorption isotherm (pore size distribution in inset).

Figure S5. Outlet NO₂ and NO concentration as a function of normalized time for dry *Co_3O_4 . Conditions: $T = 25 \text{ °C}$, mass = 0.25 g, flow rate = 0.2 L min⁻¹.

 *Co_3O_4 was prepared by air calcination of commercially procured Co(OH)₂ at 500 °C for 2 h in a muffle furnace.

Figure S6. PXRD patterns ($2\theta = 14-18^\circ$) of NO₂-adsorbed NaCoO samples in dry and wet conditions.

	Elements (At. %)					
Samples	$\mathbf C$		Na	Co	N	
NaCoO Fresh	26.9	49.0	10.2	13.9	0.0	
$NaCoO NO2$ dry	22.3	49.1	9.8	15.7	3.1	
NaCoO NO ₂ wet	24.6	48.3	13.5	11.4	2.2	

Table S1. Atomic composition of fresh and NO₂-exposed NaCoO samples.

Table S2. The peak-fitting results of N 1s high-resolution signal of fresh and NO₂-exposed NaCoO samples.

Sample	Assignment	$E_{\rm B}$ (eV)	FWHM (eV)	At. $%$
$NaCoO NO2$ dry	NO ₂	403.8	2.4	33.7
	NO_3^-	407.5	2.7	66.3
NaCoO NO ₂ wet	$NO2-$	404.1	2.0	33.6
	NO_3^-	406.5	2.3	66.4

Table S3. The peak-fitting results of Na 1s high-resolution signal of fresh and NO₂-exposed NaCoO samples.

Sample	Assignment	$E_{\rm B}$ (eV)	FWHM (eV)	At. $%$
NaCoO Fresh	$Na+_{esc}$	1070.4	1.4	20.9
	$Na+$ _{fsc}	1071.6	1.9	79.1
$NaCoO NO2$ dry	$Na+esc$	1071.0	1.9	49.2
	$Na+$ _{fsc}	1072.2	2.3	50.8
NaCoO NO ₂ wet	$Na+_{esc}$	1071.2	1.9	26.8
	$Na+$ _{fsc}	1072.7	2.1	38.6
	Na^+ -OH	1074.3	2.1	34.6

Table S4. The peak-fitting results of Co 2p_{3/2} high-resolution signal of fresh and NO₂-exposed NaCoO samples.

Table S5. The peak-fitting results of O 1s high-resolution signal of fresh and NO₂-exposed NaCoO samples.

