Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

ESI file for

Reactive adsorption of NO₂ over NaCoO₂-Co₃O₄ nanocomposite: Experimental study and first-principles calculations

Nishesh Kumar Gupta^{a,b,1}, Kaptan Rajput^{c,d,1}, Bijal R. Mehta^c, Herlys Viltres^e, Debesh R. Roy^c, Kwang Soo Kim^{a,b*}

Section 1: Synthesis of (Na,Co)-BTC MOF

The MOF was prepared by sonicating (Sonics Vibra-cell 500 W, 20 kHz, 44% amplitude) freshly prepared cobalt hydroxide with H₃BTC solution (0.21 mol L⁻¹ in DMF). Cobalt hydroxide was prepared by adding 82.5 mL of methanolic NaOH solution (1.30 mol L⁻¹) in 75 mL of Co(NO₃)₂·6H₂O salt solution in DMF (0.55 mol L⁻¹).

Section 2: Analytical instruments

The surface morphology was probed by a Hitachi S-4300 field emission scanning electron microscope (FE-SEM, Japan). The dried samples were coated with Au-Pt alloy using an E-1048 Hitachi ion sputter to improve the signal-to-noise ratio. The 2D elemental mapping was performed on an X-Maxn 80 T energy-dispersive X-ray spectroscope (Oxford, United Kingdom). Fouriertransform infrared (FTIR) spectra were recorded on a Cary670 FTIR spectrometer. Powder X-ray diffraction (PXRD) patterns were recorded at 25 °C on an Ultima IV X-ray diffractometer (Rigaku, Japan) with Cu K α radiation ($\lambda = 1.5406$ Å) and a Ni filter. Thermal gravimetric analysis (TGA) of MOF was performed on a TG 209 F3 Thermogravimetric Analyzer (NETZSCH, Germany). N2 adsorption-desorption measurements were conducted on Quantachrome Instruments v10.0 (Florida, United States) after degassing samples at 120 °C for 6 h. The chemical states of constituent elements were analyzed using an X-ray photoelectron spectrometer (XPS, Nexsa spectrometer system, Thermo Scientific, United Kingdom) focused with Al Ka monochromator (1486.6 eV). Spectra were charge corrected to the main line of the C 1s spectrum (aromatic carbon) set to 284.7 eV. Spectra were analyzed using CasaXPS software (version 2.3.14) with GL(p) =Gaussian/Lorentzian product formula, where the mixing is determined by m = p/100, GL(100) is a pure Lorentzian, and GL(0) is a pure Gaussian. We have used GL(30) in this study.

Section 3: DFT calculations

A spin-polarized density functional theory (DFT) ^{1,2} investigation was conducted to study the bare and NO₂ gas molecule adsorbed Co₃O₄ and NaCoO₂ surface by utilizing the Vienna ab initio simulation package (VASP) ³. VASP package incorporates the projector augmented wave (PAW) and generalized gradient approximation (GGA) methods to properly include the interactions between ions and electrons ^{4,5}. For all the structural and electronic properties calculations, cutoff energy of 500 eV, and the Brillouin-zone integration using a Monkhorst-Pack scheme ⁶ with a 5 × 5 × 1 k-point grid was considered. We enforced the convergence criteria for the total energy and atomic forces as 10⁻⁴ eV and 0.02 eV/Å, respectively. To describe the adsorption of the NO₂ gas molecules on the Co₃O₄ and NaCoO₂ surface accurately, we considered the van der Waals interaction using the DFT-D3 method ⁷. For the surface interaction study with NO₂ gas molecule on Co₃O₄ and NaCoO₂ surfaces and removing the interaction between the imaginary surfaces, we considered a 15 Å vacuum region in the Z direction. For the graphical representations, we considered the VESTA package ⁸. The adsorption energy (E_{ad}) of the NO₂ gas molecule on the Co₃O₄ and NaCoO₂ surface is obtained from the following equation (1):

$$E_{ad} = E_{Surface} + E_{NO_2} - E_{Surface} + NO_2$$
(1)

In the above equation, the initial three terms represent the ground state energy of the Co_3O_4 or $NaCoO_2$ surface, the ground state energy of the isolated gas molecules, and the ground state energy of the complex configuration for the NO_2 gas molecule, respectively. To obtain the donor and acceptor nature of the NO_2 gas molecule, we considered the Bader charge analysis ⁹. The formulation for the charge density difference ($\Delta \rho$) is reported as:

$$\Delta \rho = \rho_{Surface + NO_2} - \rho_{NO_2} - \rho_{Surface} \quad (2)$$

In the above equation, the first three terms on the right-hand side describe the charge density of the complex system, the charge density of the isolated gas molecules, and the charge density of the Co_3O_4 or $NaCoO_2$ surface, respectively.

References

- 1. P. Hohenberg, W. Kohn, Phys. Rev., 1964, 136, B864.
- 2. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.
- 3. G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- 4. P. E. Blöchl, Phys. Rev. B, 1994, 50 (24), 17953.
- 5. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77 (18), 3865.
- 6. H. J. Monkhorst, J. D. Pack Phys. Rev. B, 1976, 13 (12), 5188–5192.
- 7. S. Grimme, J. Comput. Chem., 2006, 27 (15), 1787–1799.
- 8. K. Momma, F. Izumi, J. Appl. Crystallogr., 2008, 41 (3), 653–658.
- 9. G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci., 2006, 36 (3), 354–360.

Figure S1. TGA profile of (Na,Co)-BTC.

Figure S2. TEM-EDAX analysis of NaCoO.

Figure S3. (a) N₂ adsorption-desorption isotherm; (b) Pore size distribution of (Na,Co)-BTC.

Figure S4. N₂ adsorption-desorption isotherm (pore size distribution in inset).

Figure S5. Outlet NO₂ and NO concentration as a function of normalized time for dry $^{*}Co_{3}O_{4}$. Conditions: T = 25 °C, mass = 0.25 g, flow rate = 0.2 L min⁻¹.

 $^{*}Co_{3}O_{4}$ was prepared by air calcination of commercially procured $Co(OH)_{2}$ at 500 °C for 2 h in a muffle furnace.

Figure S6. PXRD patterns ($2\theta = 14-18^{\circ}$) of NO₂-adsorbed NaCoO samples in dry and wet conditions.

	Elements (At. %)					
Samples	С	0	Na	Со	Ν	
NaCoO_Fresh	26.9	49.0	10.2	13.9	0.0	
NaCoO_NO2_dry	22.3	49.1	9.8	15.7	3.1	
NaCoO_NO2_wet	24.6	48.3	13.5	11.4	2.2	

Table S1. Atomic composition of fresh and NO₂-exposed NaCoO samples.

Table S2. The peak-fitting results of N 1s high-resolution signal of fresh and NO2-exposedNaCoO samples.

Sample	Assignment	$E_{\rm B}~({\rm eV})$	FWHM (eV)	At. %
NaCoO_NO2_dry	NO ₂ ⁻	403.8	2.4	33.7
	NO ₃ ⁻	407.5	2.7	66.3
NaCoO_NO2_wet	NO ₂ ⁻	404.1	2.0	33.6
	NO ₃ ⁻	406.5	2.3	66.4

Table S3. The peak-fitting results of Na 1s high-resolution signal of fresh and NO2-exposedNaCoO samples.

Sample	Assignment	$E_{\rm B}({\rm eV})$	FWHM (eV)	At. %
NaCoO_Fresh	Na ⁺ _{esc}	1070.4	1.4	20.9
	Na ⁺ _{fsc}	1071.6	1.9	79.1
NaCoO_NO2_dry	Na ⁺ _{esc}	1071.0	1.9	49.2
	Na ⁺ _{fsc}	1072.2	2.3	50.8
NaCoO_NO2_wet	Na ⁺ _{esc}	1071.2	1.9	26.8
	Na ⁺ _{fsc}	1072.7	2.1	38.6
	Na ⁺ -OH	1074.3	2.1	34.6

Table S4. The peak-fitting results of Co $2p_{3/2}$ high-resolution signal of fresh and NO2-exposed
NaCoO samples.

Sample	Assignment	$E_{\rm B}~({\rm eV})$	FWHM (eV)	At. %
NaCoO_Fresh	Co ³⁺	779.6	1.4	53.2
	Co ²⁺	780.8	2.5	46.8
	Satellite	782.4	3.2	-
	Satellite	788.0	2.5	-
NaCoO_NO2_dry	Co ³⁺	779.7	1.5	56.0

	Co ²⁺	781.0	1.9	44.0
	Satellite	782.6	2.5	-
	Satellite	789.8	2.7	-
NaCoO_NO2_wet	Co ³⁺	779.7	2.0	37.5
	Co ²⁺	781.7	2.3	62.5
	Satellite	783.5	2.6	-
	Satellite	790.3	2.5	-

 Table S5. The peak-fitting results of O 1s high-resolution signal of fresh and NO2-exposed

 NaCoO samples.

Sample	Assignment	$E_{\rm B}({\rm eV})$	FWHM (eV)	At. %
NaCoO_Fresh	O–Na	529.8	1.1	16.8
	O–Co	530.7	1.4	28.4
	О-Н	532.0	1.5	30.3
	H ₂ O	533.1	1.9	21.1
	Na Auger	534.8	2.0	3.4
NaCoO_NO2_dry	O–Na	529.7	1.1	15.6
	O–Co	530.6	1.3	27.2
	O-H/O-N*	531.9	1.8	28.2
	H ₂ O	533.4	1.9	21.5
	Na Auger	535.1	1.9	7.5
NaCoO_NO2_wet	O–Na	529.8	1.5	10.1
	O–Co	531.3	1.7	20.6
	O-H/O-N	532.6	1.8	30.2
	H ₂ O	534.1	1.9	26.2
	Na Auger	535.4	2.0	12.9