Supporting Information

Selective Separation of 2,5-Dimethylfuran and 2,5- Dimethyltetrahydrofuran using Nonporous Adaptive Crystals ofa Hybrid[3]arene

Yang, Liu 1,2,† , and Yitao Wu 1,2,†,*

¹Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.

²ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co., LTD Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.

†Yang Liu and Yitao Wu contribute equally to this work. Corresponding author: yitaowu@zju.edu.cn.

Table of Content (26 pages)

1. Materials

All starting materials including 2,5-dimethylfuran (**DMeF**) and 2,5-dimethyltetrahydrofuran (**DMeTHF**) were purchased commercially and used as received. Hybrid[3]arene (**HB3**) was synthesized as described previously.S1 Activated crystalline **HB3** was denoted as **HB3***α*. **HB3***α* was prepared according to the previous report.^{S2} All the mixture in this work were $v: v = 1:1$ unless specifically noted.

Substance	Melting point $\rm ^{\circ}C$	Boiling point $\rm ^{\circ}C)$	Saturated vapor pressure at 298 K (kPa)
DMeF	-62.8	96.0	57.1 ± 0.2 mmHg
DMeTHF	-62.8	91.0	62.1 ± 0.1 mmHg

Table S1 Physical properties of**DMeF** and **DMeTHF**.S3

2. Methods

2.1. Powder X-Ray Diffraction (PXRD)

The PXRD data were collected on a Rigaku Ultimate-IV X-Ray diffractometer operating at 40 kV/30 mA using the Cu Ka line $(\lambda = 1.5418 \text{ Å})$. Data were measured over the range 5–35° in 5°/min steps over 8 min.

2.2. Thermogravimetric Analysis (TGA)

TGA analysis was carried out using a Q5000IR analyzer (TA Instruments) with an automated vertical overhead thermobalance. The samples were heated at 10 °C/min using N_2 as the protective gas.

2.3. Single Crystal Growth

Single crystals of **DMeF**@**HB3** were grown by placing 5.00 mg of dry **HB3** powder in a small vial, adding 1 mL of **DMeF**, heating until all the powder was dissolved, and allowing to evaporate at room temperature about one week.

2.4. Single Crystal X-ray Diffraction (SCXRD) Analyses

Single crystal X-ray diffraction data were collected on a Bruker D8 VENTURE CMOS X-ray diffractometer with a graphite monochromated Mo–K α radiation (λ = 0.71073 Å).

2.5. Solution ¹H NMR Spectroscopy

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded using a Bruker Avance III DMX 400 spectrometer, a Bruker Avance III DMX 500 spectrometer, and an Agilent DD2-600 spectrometer.

2.6. Gas Chromatography (GC)

Gas chromatography analysis: GC measurements were carried out using an Agilent 7890B instrument configured with a FID detector and a DB-624 column (30 m \times 0.53 mm \times 3.0 μ m). Samples were analyzed using headspace injections and were performed by incubating the sample at 120 °C for 30 min followed by sampling 1.00 mL of the headspace. The following GC method was used: the oven was programmed from 50 °C, and ramped in 10 °C min⁻¹ increments to 150 °C with 15 min hold; the total run time was 25 min; the injection temperature was 250 °C; the detector temperature was 280 °C with nitrogen, air, and make-up flow-rates of 35,350, and 35 mL min⁻¹, respectively; helium (carrier gas) flow-rate was 3.0 mL min⁻¹. The samples were injected in the split mode (30:1).

2.7. Gas sorption measurements

N² adsorption and desorption isotherms for the activated materials were measured at 77 K using a JW-BK200C 2 instrument.

2.8. Theoretical calculations

The geometry optimization and density functional theory (DFT) chemical description for the molecular structures of all **DMeF** and **DMeTHF** compounds were performed using Gaussian09 program^{S4} package with M062X exchange-correlation functional and $6-311G$ ^{**} basis set^{S5-S6}. .

3. Characterization of Activated Hybrid[3]arene

Scheme S1. Synthetic route to hybrid[3]arene (**HB3**)

Synthesis of**HB3**: To the solution of 4,4'-biphenol diethyl ether (2.42 g, 10.0 mmol) and $1,3,5$ -trimethoxybenzene $(3.36 \text{ g}, 20.0 \text{ mmol})$ in CHCl₃ $(200 \text{ mL}),$ paraformaldehyde (0.900 g, 30.0 mmol) and trifluoroacetic acid (TFA, 10 mL) were added. The mixture was refluxed for 30 min, and the progress was monitored by thin-layer chromatography (TLC). The mixture was cooled to room temperature, and an excess of saturated aqueous $Na₂CO₃$ was added to neutralize TFA. The organic phase was separated and the crude product was purified by column chromatography (petroleum ether/ CH₂Cl₂, v/v 10:1 to 3:1) to get **HB3** as a white solid (1.67 g, 25%).

 27728588544

6.34

 $\frac{4}{4}$ $\frac{4}{4}$ $\frac{3}{4}$ $\frac{4}{3}$

Fig. S1. ¹H NMR spectrum (600 MHz, chloroform-*d*, 298 K) of **HB3**.

Fig. S2. ¹H NMR spectrum (600 MHz, chloroform-*d*, 298 K) of **HB3***α*.

Fig. S3. PXRD pattern of **HB3***α*.

Fig. S4. PXRD patterns of(I) as-synthesized **HB3**; (II) **HB3** under vacuum; (III) high temperature; (IV) humid environment conditions.

Fig. S5. TGA curve of desolvated **HB3***α*.

Fig. S6. Experimental N_2 adsorption isotherms at 77 K measuring the porosity of activated **HB3***α*. The apparent Brunauer-Emmett-Teller (BET) surface area is calculated to be 2 m²/g, indicating $HB3\alpha$ is nonporous.

4. Solid–Vapor Adsorption Experiments of Hybrid[3]arene **4.1. Single-Component DMeF and DMeTHF Adsorption Experiments**

Fig. S7. ¹H NMR spectrum (600 MHz, chloroform-*d*, 298 K) of $HB3a$ after adsorption of **DMeF** vapor.

Fig. S8. ¹H NMR spectrum (600 MHz, chloroform-*d*, 298 K) of **HB3***α* after adsorption of **DMeTHF** vapor.

Fig. S9. TGA curve of desolvated **HB3***α* after adsorption of **DMeF** vapor. The weight loss below 150 ℃ can be calculated to one equivalent of **DMeF** molecule *per* **HB3** molecule.

Fig. S10. TGA curve of desolvated **HB3***α* after adsorption of **DMeTHF** vapor. TGA results revealed no weight loss, indicating no uptake of **DMeTHF** vapor.

Formula	DMeF@HB3
Empirical formula	$C_{43}H_{50}O_9$
Formula weight	710.83
Temperature/K	169.99
Crystal system	triclinic
Space group	P_{1}
$a/\text{\AA}$	10.8040(3)
$b/\text{\AA}$	13.0735(3)
$c/\text{\AA}$	15.6468(4)
α ^o	109.2350(10)
β /°	97.967(2)
γ / \circ	107.3160(10)
Volume/Å ³	1922.21(9)
Z	$\overline{2}$
$\rho_{\rm calc}(g/cm^3)$	1.228
μ /mm ⁻¹	0.443
F(000)	760
Crystal size/mm ³	$0.13 \times 0.12 \times 0.1$
Radiation	GaK α (λ = 1.34139)
2θ range for data collection/ \circ	6.754 to 109.886
Index ranges	$-13 \le h \le 13, -14 \le k \le 15, -19 \le l \le 19$
Reflections collected	19307
Independent reflections	7275 $[R_{\text{int}} = 0.0894, R_{\text{sigma}} = 0.0986]$
Data/restraints/parameters	7275/210/546
Goodness-of-fit on F^2	1.018
Final R indexes $[I \geq 2\sigma (I)]$	$R_1 = 0.0807$, $wR_2 = 0.2057$
Final R indexes [all data]	$R_1 = 0.1151$, $wR_2 = 2377$
Largest difference peak/hole/e Å ⁻³	$0.35/-0.41$
CCDC-number	1975518

4.2. Structural Analyses of Single-Component Vapor Adsorption Experiments Table S2. Experimental single crystal X-ray diffraction data of **DMeF**@**HB3** structure.

Fig. S11. Capped-stick and spacefill representation of the single crystal structure of **CHCl**³ $@$ **HB3** in a unit cell. The elementary cell is marked with an orange cuboid (*a* = 28.16(6) Å, *b* = 14.15(3) Å, *c* = 19.61(4) Å, *α* = 90°, *β* = 106.28(10)°, *γ* = 90°, space group: *C*2/*C*). Carbon atoms are grey, oxygen atoms are red, chlorine atoms are green, and hydrogen atoms are white.

Fig. S12. Capped-stick and spacefill representation of the single crystal structure of **DMeF**@HB3 in a unit cell. Carbon atoms are grey, oxygen atoms are red, and hydrogen atoms are white. The elementary cell is marked with an orange cuboid (*a* = 10.80(3) Å, *b* = 13.07(3) Å, *c* = 15.65(4) Å, *α* = 109.24(10)°, *β* = 97.98(2)°, *γ* = 107.32(10)°, space group: *P*ī). Compared with the single crystal structure of **CHCl3**@**HB3**, the unit cell parameters have obvious difference, this also indicates the adaptive nature of **HB3** crystals.

Fig. S13. Capped-stick representation of the single crystal structure of **DMeF**@**HB3**. Carbon atoms are grey, hydrogen atoms are white, and oxygen atoms are red. [C–H**…**π] distance (Å) and angle (deg): 2.75, 134.34.

Fig. S14. Capped-stick representation of the single crystal structure of **DMeF**@**HB3**. Carbon atoms are grey, hydrogen atoms are white, and oxygen atoms are red. Hydrogen-bond parameters: [C**…**O] distances (Å), [H**…**O] distances (Å) and [C–H**…**O] angles (deg) of [C–H**…**O] hydrogen bonds, 3.22, 2.67, 115.17.

Fig. S15. Capped-stick and spacefill representation of the single crystal structure of **DMeF**@**HB3** in a packing mode. Carbon atoms are grey and oxygen atoms are red. Hydrogen atoms are omitted for clarity.

Fig. S16. PXRD patterns of **HB3**: (I) activated **HB3***α*; (II) after adsorption of **DMeF** vapor; (III) simulated from single crystal structure of **DMeF**@**HB3**.

Fig. S17. The optimized structures of (a) **HB3**, (b) **DMeF**, (c) *trans*-**DMeTHF** and (d) *cis-***DMeTHF**.

Fig. S18. Capped-stick representation of the calculated structure of *trans*-**DMeTHF**@**HB3**. Carbon atoms are grey, hydrogen atoms are white, and oxygen atoms are red. Hydrogen-bond parameters: [C**…**O] distances (Å), [H**…**O] distances (Å) and [C–H**…**O] angles (deg) of [C–H**…**O] hydrogen bonds, 3.25, 2.29, 145.60; 3.61, 2.79, 131.33; 3.29, 2.44, 133.07; 3.33, 2.57, 126.63; 3.46, 2.65, 130.09.

Fig. S19. Capped-stick representation of the calculated structure of *cis*-**DMeTHF**@**HB3**. Carbon atoms are grey, hydrogen atoms are white, and oxygen atoms are red. Hydrogen-bond parameters: [C**…**O] distances (Å), [H**…**O] distances (Å) and [C–H**…**O] angles (deg) of [C–H**…**O] hydrogen bonds, 3.42, 2.35, 166.01; 3.38, 2.42, 145.22; 3.39, 2.43, 145.83; 3.36, 2.39, 147.49.

Substance	Number of guest molecules in HB3	E_{BE} (kJ/mol)
DMeF		-33.98
trans-DMeTHF		-30.75
cis-DMeTHF		-28.24

Table S3. Calculated binding energies of **DMeF**/**DMeTHF** in **HB3**.

4.3. DMeF and DMeTHF Mixture Adsorption Experiments

For each mixture solid–vapor experiment, an open 5.00 mL vial containing 20.00 mg of guest-free **HB3***α* adsorbent was placed in a sealed 20.00 mL vial containing 1.00 mL of a 50:50 *v/v* **DMeF** and **DMeTHF** mixture. The relative uptake amount of **MeF** or **DMeF** in **HB3***α* was measured by heating the crystals to release the adsorbed vapor using GC method. Before measurement, the crystals were heated at 60 ℃ to remove the surface-physically adsorbed vapor.

Fig. S20. GC measurements of the relative uptake of **DMeF**/**DMeTHF** in **HB3***α* after 20.00 mg of crystals were put in 1 mL of a 50:50 *v*/*v* **DMeF**/**DMeTHF** mixture for 30 hours.

Fig. S21. PXRD patterns of **HB3**: (I) activated **HB3***α*; (II) after adsorption of **DMeF** vapor; (III) after adsorption of **DMeTHF** vapor; (IV) after adsorption of a 50:50 *v/v* **DMeF** and **DMeTHF** mixture vapor.

145
 145
 144 5.83 -2.25 6.35

Fig. S22. ¹H NMR spectrum (600 MHz, chloroform-*d*, 298 K) of **HB3***α* after adsorption of a 50:50 *v/v* **MeF** and **DMeTHF** mixture vapor.

5. Recycling Experiments of Hybrid^[3]arene

An open 5.00 mL vial containing 20.00 mg of **DMeF**@**HB3** was desolvated under vacuum at 150 ℃ overnight. The resultant crystals were characterized by TGA, PXRD and ¹H NMR methods.

Fig. S23. TGA curve of **DMeF**@**HB3** after removal of **DMeF**.

Fig. S24. PXRD patterns of **HB3**: (I) **HB3***α*; (II) desolvated **DMeF**@**HB3**. This result indicated that **DMeF**@**HB3** could transform back to activated **HB3***α* after removal of **DMeF**.

Fig. S25. ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) original **HB3***α*; (b) **HB3***α* after adsorption of **DMeF** vapor; (c) **DMeF**@**HB3** after removal of **DMeF**; (d) desolvated **DMeF**@**HB3** after adsorption of **DMeF** vapor.

 7.0 6.5 3.0 0.0 7.5 6.0 5.5 5.0 4.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5 $f1$ (ppm) **Fig. S26.** ¹H NMR spectra (400 MHz, chloroform-d, 298 K): (a) original **HB3***α*; (b) **HB3***α* after adsorption of **DMeF** vapor; (c) **DMeF**@**HB3** after removal of **DMeF** with five cycles; (d) desolvated **DMeF**@**HB3** after adsorption of **DMeF** vapor with five cycles; (e) **DMeF**@**HB3** after removal of **DMeF** with ten cycles; (f) desolvated **DMeF**@**HB3** after adsorption of **DMeF** vapor with ten cycles.

Fig. S27. PXRD patterns of **HB3**: (a) original **HB3***α*; (b) **HB3***α* after adsorption of **DMeF** vapor; (c) **DMeF**@**HB3** after removal of **DMeF** with five cycles; (d) desolvated **DMeF**@**HB3** after adsorption of **DMeF** vapor with five cycles; (e) **DMeF**@**HB3** after removal of **DMeF** with ten cycles; (f) desolvated **DMeF**@**HB3** after adsorption of **DMeF** vapor with ten cycles.

Fig. S28. Relative uptake of **DMeF** and **DMeTHF** by **HB3***α* over 30 hours after **HB3***α* was recycled ten times.

Fig. S29. PXRD patterns of**HB3**: (I) activated **HB3**; (II) initial synthetic **HB3**.

6. References

[S1] J. Zhou, J. Yang, B. Hua, L. Shao, G. Yu, *Chem*. *Commun*. **2016**, *52*, 1622–1624.

[S2] K. Jie, M. Liu, Y. Zhou, M. A. Little, A. Pulido, S.-Y. Chong, A. Stephenson, A. R. Hughes, F. Sakakibara, T. Ogoshi, F. Blanc, G. M. Day, F. Huang, A. I. Cooper, *J*. *Am*. *Chem*. *Soc*. **2018**, *140*, 6921–6930.

[S3] D. R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, FL, **2005**, pp. 203–365.

[S4] Gaussian 09, Revision A.02; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al. Gaussian, Inc.: Wallingford, CT, **2009**

[S5] C. Lee, W. Yang, R. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, *Phys. Rev. B.* **1988**, *37*, 785–789.

[S6] R. Ditchfield, W. Hehre, J. Pople, Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules, *J.* *Chem. Phys.* **1971**, *54*, 724–728.