Kinetics and Mechanism of Halide Exchange in Reactions of $\mathbf{C p R u}\left(\mathbf{P P h}_{3}\right)_{2} \mathbf{C l}$ with Alkyl Halides: Evidence for Radical Pairs

Katherine Carney, Lauren Polito, Kamilya Reid, Surbhi Srinivasan, Gabrielle Blake, Nithin Chintala, Sijia S. Dong* and Rein U. Kirss*

Department of Chemistry and Chemical Biology Northeastern University, Boston MA 02115.

Table of Contents

Experimental Procedures

Reagents	S 3
Instrumentation	S 3
ATRA reactions of $\mathrm{CHBr}_{3}, \mathrm{CBr}_{4}, \mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}$ with styrene and AIBN	
\quad catalyzed by 1-3.	S 3
Kinetic Measurements	S 5
Computational Experiments	S 5

Figure S1: Preparation of sealed NMR samples containing solutions of $\mathbf{1}$ and CBr_{4} in fluorobenzene $/ \mathrm{C}_{6} \mathrm{D}_{6}$.S8

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between styrene and bromoform catalyzed by $\mathbf{1}$ and
AIBN in toluene-d ${ }^{8}$. (a) $<1 \mathrm{~h}$ at room temperature; (b) after heating at $87^{\circ} \mathrm{C}$ for 72 h .

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between styrene and carbon tetrabromide catalyzed by $\mathbf{1}$ and AIBN in toluene- d^{8}. (a) $<1 \mathrm{~h}$ at room temperature; (b) after heating at $54^{\circ} \mathrm{C}$ for 1 h .

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between styrene and ethyl dibromoacetate catalyzed by $\mathbf{1}$ and AIBN in toluene- d^{8}. (a) $<1 \mathrm{~h}$ at room temperature; (b) after heating at $87^{\circ} \mathrm{C}$ for 18 h .

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between styrene and ethyl tribromoacetate catalyzed by $\mathbf{1}$ and AIBN in toluene- d^{8}. (a) $<1 \mathrm{~h}$ at room temperature; (b) after heating at $87^{\circ} \mathrm{C}$ for 18 h .

Figure S2 6: Concentration changes for $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathbf{1})$ and $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}(\mathbf{3})$ vs time for halide exchange reaction with CBr_{4} and CCl_{4}.

Figure S3 7: Concentration of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathbf{1})$ vs time (s) under conditions for ATRA of CBr_{4} to styrene.

Figure S4 8: Solution of $\mathbf{1}$ and CBr_{4} in fluorobenzene $/ \mathrm{C}_{6} \mathrm{D}_{6}$ before and after reaction and after decomposition in air.

Figure S5 9: Plot of $\ln [1]$ vs time (s) for the reaction between $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and a. $\mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et}$
b. $\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Etc} . \mathrm{CBr}_{4}$ d. CHBr_{3} in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F} / 10 \% \mathrm{C}_{6} \mathrm{D}_{6}$ at $34^{\circ} \mathrm{C}$ showing the effects of radical initiators azo bis(isobutyronitrile) (AIBN) and dihydroanthracene (DHA) and radical inhibitor duraquinone (DQ); e. Plot of $\ln [4]$ vs time (s) for the reaction between $\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and CBr_{4}

Figure S6 10: Plots of $k_{\text {obs }}$ vs [RBr] for the reaction between $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and RBr at $34^{\circ} \mathrm{C}$ in fluorobenzene $/ 10 \%$ benzene- d^{6}. a. $\mathbf{1}, \mathrm{RBr}=\mathrm{CBr}_{4} \mathrm{~b} . \mathbf{1}, \mathrm{RBr}=\mathrm{CHBr}_{3} ; \mathrm{c} . \mathbf{1}$, $\mathrm{RBr}=\mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et}$; d. 1, $\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}$; e. $\mathbf{4}, \mathrm{RBr}=\mathrm{CBr}_{4} ; \mathrm{f} .4, \mathrm{RBr}=\mathrm{CBr}_{4}$ at $25^{\circ} \mathrm{C}$.

Figure S7 11: Eyring plot $\ln k_{\text {obs }} / \mathrm{T}$ vs $1 / \mathrm{T}$ for the reaction between $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and bromobutane in fluorobenzene $/ 10 \%$ benzene- d^{6}

Table S1: Summary of Observed Rate Constants for the Reaction Between $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(10.5 \mathrm{mM})$ and Organic Halides in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F} / 10 \% \mathrm{C}_{6} \mathrm{D}_{6}$

Table S2: Summary of Observed Rate Constants for the Reaction Between $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and Bromobutane in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F} / 10 \% \mathrm{C}_{6} \mathrm{D}_{6}$

References S20

Experimental Procedures

Reagents

Ruthenium (III) chloride hydrate, $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$, was purchased from Pressure Chemical, Inc. Triphenylphosphine, cyclopentadiene, bromoform, carbon tetrabromide, ethyl dibromoacetate, azo \{bis(isobutyronitrile) \} (AIBN), duraquinone (DQ), and dihydroanthracene (DHA) (Fischer Acros Chemical, Inc.) were used as received. Ethyl tribromoacetate, $\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}$, was prepared by literature procedures ${ }^{1}$ (or purchased from Sigma-Aldrich Inc). Solvents were purified by refluxing over Na /benzophenone (toluene, tetrahydrofuran, benzene, hexane, pentane), $\mathrm{P}_{2} \mathrm{O}_{5}$ (dichloromethane) or MgSO_{4} (ethanol) and distilled prior to use. Toluene- d^{8} and benzene- d^{6} (Cambridge Isotope Laboratories) were purified by distillation from $\mathrm{Na} /$ benzophenone. Fluorobenzene (Fisher-Acros) was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Cyclopentadienylruthenium (II) phosphine compounds $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathbf{1}),{ }^{2}$ $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}(\mathbf{3}),{ }^{3}$ and $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ (4), ${ }^{4}$ were prepared by literature procedures; $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathbf{2})$ was obtained from the Strem Chemical Co.

Instrumentation

NMR spectra are recorded at 400 MHz for ${ }^{1} \mathrm{H}$ and 162 MHz for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ on a Mercury XL300 spectrometer. Proton chemical shifts are reported relative to residual protons in the solvent $\left(\mathrm{CD}_{2} \mathbf{H C l}\right.$ at $\delta 7.24 \mathrm{ppm}, \mathrm{CD}_{2} \mathbf{H C} \mathrm{C}_{6} \mathrm{D}_{5}$ at $\delta 2.15$ ppm or $\mathrm{C}_{6} \mathrm{D}_{5} \mathbf{H}$ at $\delta 7.15 \mathrm{ppm}$ relative to TMS at 0.00 ppm). Phosphorus chemical shifts are reported relative to 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ at 0.0 ppm .

ATRA reactions of $\mathrm{CHBr}_{3}, \mathrm{CBr}_{4}, \mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathrm{and}^{2} \mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}$ with styrene and AIBN catalyzed by 1-3 by NMR Reaction with CHBr_{3}

A solution containing $11.3 \mathrm{mg}\left(1.42 \times 10^{-5} \mathrm{mols}\right) \mathrm{Cp} * \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathbf{2}), 1.43 \times 10^{-3}$ mols styrene, $5.6 \times 10^{-3} \mathrm{mols}$ CHBr_{3}, and 7.4×10^{-6} moles AIBN in $650 \mu \mathrm{~L} \mathrm{~d}^{8}$-toluene is prepared in a vial in a M. Braun glove box. A $500 \mu \mathrm{~L}$ aliquot of the solution is transferred to an NMR tube under nitrogen. The tube is flame sealed under vacuum. The reaction is heated in thermostated oil baths. Very little reaction is observed at $35^{\circ} \mathrm{C}$ after 17 hours but heating to $45^{\circ} \mathrm{C}$ for $31 / 2$ hours leads to formation of $\mathrm{PhCHBrCH}_{2} \mathrm{CHBr}_{2}$. The product is identified by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum with an authentic sample of $\mathrm{PhCHBrCH}_{2} \mathrm{CHBr}_{2}$ (vide infra). ${ }^{5}$
${ }^{1} \mathrm{H}\left(\mathrm{d}^{8}\right.$-toluene): $\delta 2.72 \mathrm{~m}(1 \mathrm{H}), 3.02 \mathrm{~m}(1 \mathrm{H}), 4.94 \mathrm{dd}(\mathrm{J}=9.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48 \mathrm{dd}(\mathrm{J}=9.4,5.2 \mathrm{~Hz}, 1 \mathrm{H})$; The resonances for the aryl protons overlap with any residual resonances assigned to styrene and the $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5-\mathrm{x}} \mathrm{H}_{\mathrm{x}}$ resonances from the solvent

An analogous reaction between $11.4 \mathrm{mg}\left(1.57 \times 10^{-5} \mathrm{mols}\right) \mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(1), 1.43 \times 10^{-3}$ mols styrene, 5.6×10^{-3} mols CHBr_{3}, and 7.4×10^{-6} moles AIBN in d^{8}-toluene at $87^{\circ} \mathrm{C}$ for 6 h results in lower conversion than with 2 but the same product is detected by ${ }^{1} \mathrm{H}$ NMR. In addition to resonances assigned to styrene ($\delta 5.11 \mathrm{dd}, 5.63 \mathrm{~d}, 6.6 \mathrm{~d}$ and
aryl resonances between 7 and 8 ppm), the same resonances assigned to $\mathrm{PhCHBrCH}_{2} \mathrm{CHBr}_{2}$ in the previous reaction are observed in the ${ }^{1} \mathrm{H}$ NMR spectra.

Reaction between $9.4 \mathrm{mg}\left(1.2 \times 10^{-5} \mathrm{mols}\right) \mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}, 1.43 \times 10^{-3}$ mols styrene, $5.6 \times 10^{-3} \mathrm{mols}^{\mathrm{CHBr}}$ 3 , and 7.4×10^{-6} moles AIBN in d^{8}-toluene at $87^{\circ} \mathrm{C}$ for 6 hours also leads to significant conversion to $\mathrm{PhCHBrCH}_{2} \mathrm{CHBr}_{2}$ as detected by ${ }^{1} \mathrm{H}$ NMR.

Reaction with CDCl_{3}

As described above, a solution containing $9.5 \mathrm{mg}\left(1.2 \times 10^{-5} \mathrm{mols}\right) 2,1.43 \times 10^{-3} \mathrm{mols}$ styrene, $5.6 \times 10^{-3} \mathrm{mols}$ CDCl_{3}, and 7.4×10^{-6} moles AIBN in $650 \mu \mathrm{~L} \mathrm{~d}^{8}$-toluene is prepared in a vial in a M. Braun glove box. A $500 \mu \mathrm{~L}$ aliquot of the solution is transferred to an NMR tube under nitrogen. The tube is flame sealed under vacuum and heated to $45^{\circ} \mathrm{C}$ for $31 / 2 \mathrm{~h}$ resulting in complete conversion ($\geq 95 \%$) to $\mathrm{PhCHClCH}_{2} \mathrm{CDCl}_{2}$. The product is characterized by comparison with literature data. ${ }^{61} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{d}^{8}\right.$-toluene $): \delta 2.52 \mathrm{dd}(\mathrm{J}=4.4,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ dd $(\mathrm{J}=4.4,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90 \mathrm{dd}(\mathrm{J}=5.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.28 \mathrm{~m}\left(\operatorname{aryl} \mathrm{H}\right.$ and $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5-\mathrm{x}} \mathrm{H}_{\mathrm{x}}$ resonances from solvent).

Heating a solution containing $2.6 \mathrm{mg}\left(3.3 \times 10^{-6} \mathrm{mols}\right) 2,5.2 \mathrm{mg}\left(3.2 \times 10^{-5} \mathrm{mols}\right) \mathrm{AIBN}, 50 \mu \mathrm{~L}\left(4.36 \times 10^{-4} \mathrm{mols}\right)$ styrene and $352 \mu \mathrm{~L}\left(4.36 \times 10^{-3} \mathrm{mols}\right) \mathrm{CHCl}_{3}$ in $800 \mu \mathrm{~L} \mathrm{~d}^{8}$-toluene at $87^{\circ} \mathrm{C}$ for 18 h yielded a solution containing $\mathrm{PhCHClCH}_{2} \mathrm{CHCl}_{2} .{ }^{6}$

No reaction is observed between $10.1 \mathrm{mg}\left(1.39 \times 10^{-5} \mathrm{mols}\right) 1,1.43 \times 10^{-3}$ mols styrene, $5.6 \times 10^{-3} \mathrm{mols} \mathrm{CDCl}_{3}$, and 7.4×10^{-6} moles AIBN in d^{8}-toluene $87^{\circ} \mathrm{C}$ for several days nor between $10.1 \mathrm{mg}\left(1.39 \times 10^{-5} \mathrm{mols}\right) \mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}$, 1.43×10^{-3} mols styrene, 5.6×10^{-3} mols CDCl_{3}, and 7.4×10^{-6} moles AIBN at $87^{\circ} \mathrm{C}^{\text {in }} \mathrm{d}^{8}$-toluene after several days.

Reaction with CBr_{4}

A stock solution is prepared by dissolving $30.8 \mathrm{mg}\left(4.24 \times 10^{-5} \mathrm{mols}\right) \mathbf{1}, 33.2 \mathrm{mg}\left(2.02 \times 10^{-4} \mathrm{mols}\right)$ AIBN and 500 $\mu \mathrm{L}\left(4.36 \times 10^{-3} \mathrm{mols}\right)$ styrene in $2.0 \mathrm{~mL} \mathrm{~d}^{8}$-toluene under nitrogen. 1.0 mL of the stock solution is added to 405 mg ($1.22 \times 10^{-3} \mathrm{mols}$) CBr_{4}. A $520 \mu \mathrm{~L}$ aliquot of the latter solution is transferred to a screw cap NMR tube. Heating the sample at $54^{\circ} \mathrm{C}$ for 60 minutes leads to new resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum assigned to $\mathrm{PhCHBrCH} \mathrm{CBr}_{3}$ by comparison with the spectra reported in the literature. ${ }^{71} \mathrm{H}$ (d^{8}-toluene) $\delta 3.83 \mathrm{dd}(\mathrm{J}=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95 \mathrm{dd}$ $(\mathrm{J}=15.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21 \mathrm{dd}(\mathrm{J}=7.6,3.2 \mathrm{~Hz}, 1 \mathrm{H})$. The aryl resonances are obscured by toluene and any remaining styrene resonances.

Reaction with $\mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et}$

Ethyl dibromoacetate ($200 \mu \mathrm{~L}, 1.22 \times 10^{-3} \mathrm{mols}$) is added to $400 \mu \mathrm{~L}$ of the stock solution used above for reactions with CBr_{4}. A $520 \mu \mathrm{~L}$ aliquot is transferred to a screw cap NMR tube under nitrogen. Reaction at ambient temperature for 39 h leads to new resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum assigned to $\mathrm{PhCHBrCH}_{2} \mathrm{CHBrCO}_{2} \mathrm{Et} .{ }^{1} \mathrm{H}$ ($400 \mathrm{MHz}, \mathrm{d}^{8}$-toluene) $\delta 4.142 \mathrm{t}(\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58 \mathrm{dd}(\mathrm{J}=10,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05 \mathrm{t}(\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17 \mathrm{dd}(\mathrm{J}=$ $9.4,4 \mathrm{~Hz}, 1 \mathrm{H})$. The aryl resonances are obscured by toluene and any remaining styrene resonances while the
resonances for the ethyl group overlap with the resonances for the starting material ethyldibromoacetate, CHBr_{2} $\mathrm{CO}_{2} \mathrm{Et}$)

Reaction with $\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}$

Ethyl tribromoacetate ($15 \mu \mathrm{~L}, 1.0 \times 10^{-4} \mathrm{mols}$), styrene ($15 \mu \mathrm{~L}, 1.3 \times 10^{-4} \mathrm{mols}$), AIBN ($3.7 \mathrm{mg}, 2.3 \times 10^{-5} \mathrm{mols}$) and $\mathbf{1}\left(3.0 \mathrm{mg}, 4.1 \times 10^{-6} \mathrm{mmols}\right)$ are dissolved in $500 \mu \mathrm{~L}$ d8-toluene in a 5 mm NMR tube under nitrogen. The tube is sealed under vacuum. No reaction is observed at ambient temperature after 1 hour. Heating to $87^{\circ} \mathrm{C}$ for 17 hours leads to a tan precipitate. ${ }^{1} \mathrm{H}$ NMR spectroscopy indicates nearly all of the styrene ($\delta 5.14 \mathrm{~d}, 5.65 \mathrm{~d}, 6.61 \mathrm{dd}$), $\mathrm{Br}_{3} \mathrm{CCO}_{2} \mathrm{Et}(3.87 \mathrm{q}$ and 0.90 t$)$, and $\operatorname{AIBN}(1.19 \mathrm{~s})$ has been consumed. A forest of new peaks, all multiplets, is observed between 3-4 and 5.2-5.5 ppm.

Synthesis of $\mathrm{PhCHBrCH} \mathrm{CHBr}_{2}$ and $\mathrm{PhCHBrCH} \mathrm{CBr}_{3}$

$\mathrm{PhCHBrCH} \mathrm{CHBr}_{2}$

A toluene solution (5 mL) containing $33.8 \mathrm{mg}\left(4.24 \times 10^{-2} \mathrm{mmols}\right) \mathrm{Cp} * \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathbf{2}), 500 \mu \mathrm{~L}(4.36 \mathrm{mmols})$ styrene, $1.0 \mathrm{~mL}(11.2 \mathrm{mmols}) \mathrm{CHBr}_{3}$, and $44.4 \mathrm{mg}(0.270 \mathrm{mmols})$ AIBN is heated at $65-70^{\circ} \mathrm{C}$ for 3 hours under nitrogen. Solvent is evaporated from the cooled solution under reduced pressure and the crude product chromatographed on silica with a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexane followed by pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the solvent from the eluent yields $\mathrm{PhCHBrCH}_{2} \mathrm{CHBr}_{2}(474 \mathrm{mg}, 30 \%$ yield) of a colorless oil.
${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.06 \mathrm{~m}(1 \mathrm{H}), 3.29 \mathrm{~m}(1 \mathrm{H}), 5.11 \mathrm{dd}(\mathrm{J}=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64 \mathrm{dd}(\mathrm{J}=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.42 m (5H, aryl). ($400 \mathrm{MHz}, \mathrm{d}^{8}$-toluene): $\delta 2.72 \mathrm{~m}(1 \mathrm{H}), 3.02 \mathrm{~m}(1 \mathrm{H}), 4.94 \mathrm{dd}(\mathrm{J}=9.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48 \mathrm{dd}$ $(\mathrm{J}=9.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.94-7.18 \mathrm{~m}\left(\operatorname{aryl} \mathrm{H}\right.$ and $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5-\mathrm{x}} \mathrm{H}_{\mathrm{x}}$ resonances from solvent) ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $42.29,51.46,53.86,127.44,129.08,139.50$.

Literature ${ }^{5}:{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.07$ (ddd, $\left.\mathrm{J}=15.2,8.0,5.7,1 \mathrm{H}\right), 3.28$ (ddd, $\left.\mathrm{J}=14.8,9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.11$ (dd, $\mathrm{J}=8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, \mathrm{J}=8.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.42,51.58,53.94$, $127.55,129.20,129.22,139.61$.

Synthesis of $\mathrm{PhCHBrCH} \mathrm{CBr}_{3}$

A toluene solution (4 mL) containing $27.7 \mathrm{mg} 1\left(4.24 \times 10^{-2} \mathrm{mmols}\right), 500 \mu \mathrm{~L}$ (4.36 mmols) styrene, 327 mg (0.985 mmols) CHBr_{3}, and $44.4 \mathrm{mg}(0.270 \mathrm{mmols})$ AIBN is heated at $75-80^{\circ} \mathrm{C}$ for 3 hours under nitrogen. Solvent is evaporated from the cooled solution under reduced pressure and the crude product chromatographed on silica with hexane followed by $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexane. Evaporation of the solvent from the eluent yields 406 mg of a colorless oil, $\mathrm{PhCHBrCH}_{2} \mathrm{CBr}_{3}$ (95\% yield)
${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.1 \mathrm{~m}(\mathrm{~J}=2 \mathrm{H}), 5.33 \mathrm{~m}(1 \mathrm{H}), 5.11 \mathrm{dd}(\mathrm{J}=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64 \mathrm{dd}(\mathrm{J}=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.42 m (5H, aryl); ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{C} \mathrm{DCl}_{3}\right) \delta 35.0,50.3,66.4,127.8,128.8,128.9,140.8$.

Literature ${ }^{7}:{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.05(\mathrm{dd}, \mathrm{J}=15.6,7.7,1 \mathrm{H}), 4.12(\mathrm{dd}, \mathrm{J}=15.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, \mathrm{J}=7.7,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}) .\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.06(\mathrm{dd}, \mathrm{J}=15.5,7.5,1 \mathrm{H}), 4.12$ (dd, J=15.5, 4.0 Hz, 1 H), 5.33 (dd, J=7.5, 4.0 Hz, 1 H), $7.37(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.0,50.1,66.5,128.2,128.9,129.0,140.8 ;\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.0$, 50.0, 66.4, 128.1, 128.87, 128.94, 140.8.

Kinetic Measurements: 1 with $\mathrm{CHBr}_{3}, \mathrm{CBr}_{4}, \mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}$

Kinetic measurements are made in flame-sealed NMR tubes. A 5 mm thin wall NMR tube is glass blown to a $14 / 20$ joint. Each tube is tested for leaks by applying a current from a Tesla coil to the tube under vacuum (Figure S1). A leak causes the discharge to converge on the defective site for repair in a glass-blowing torch. Stock solutions of 5$15 \mathrm{mM} \mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathbf{1})$ or $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(4)$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F} / 10 \% \mathrm{C}_{6} \mathrm{D}_{6}$ are prepared under a nitrogen atmosphere in a M. Braun glove box. Fluorobenzene (Fisher-Acros) and benzene-d ${ }^{6}$ (Sigma Aldrich) are purified by distillation from MgSO_{4} and Na /benzophenone, respectively. Samples for kinetic experiments are prepared by adding stock solutions (typically 2 mL) to vials containing pre-weighed amounts of CBr_{4}. For experiments with liquid halocarbons $\left(\mathrm{CHBr}_{3}, \mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et}\right.$ and $\left.\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}\right)$, the reactant is added to vials containing the stock solution by micropipette. Weighed amounts of AIBN, DHA and DQ are also present for selected experiments. Aliquots ($\approx 500-525 \mu \mathrm{~L}$) from each vial are transferred to 5 mm NMR tubes in the glove box (Figure S4a), cooled to $-78^{\circ} \mathrm{C}$ and flame-sealed under vacuum (Figure S 4 b and c). In most cases, the samples can be stored in a $-20^{\circ} \mathrm{C}$ without observing any reaction. In selected cases, samples are stored at $-78^{\circ} \mathrm{C}$. After recording initial spectra, the samples are heated in thermostated oil baths, and the progress of the reaction monitored by ${ }^{31} \mathrm{P}$ NMR. The color of the solution changes from yellow to orange (Figure S5) as the halide exchange reaction proceeds. The procedure does not prevent small leaks from developing in all samples during the flame-sealing process. Inadvertent introduction of small amounts of air through pin-hole leaks leads to discoloration of the sample and formation of black precipitates (Figure S5). Efforts are made to make all measurements in triplicate, but on occasion a leaky tube means that good data can only be collected on two replicate samples. For samples containing AIBN, DHA and DQ data was collected on a single sample. Concentrations of reactants and products are determined from integration of the spectra. Pseudo first order rate constants are calculated from plots of $\ln k_{\text {obs }}$ vs time with errors calculated using Excel. Plots of $k_{\text {obs }}$ vs $[\mathrm{RBr}]$ (where $\mathrm{R}=\mathrm{CHBr}_{2}, \mathrm{CBr}_{3}, \mathrm{CHBrCO}_{2} \mathrm{Et}$, and $\mathrm{CBr}_{2} \mathrm{CO}_{2} \mathrm{Et}$). Activation parameters were calculated from the Eyring equation.

Kinetic Measurements: $\mathbf{1}$ with $\mathrm{CH}_{3} \mathrm{COBr}$

The rapid rate of reaction between 1 And $\mathrm{CH}_{3} \mathrm{COBr}$ requires a different approach to sample preparation. A stock solution (15 mM 1) in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F} / 10 \% \mathrm{C}_{6} \mathrm{D}_{6}$ is prepared in the glove box. $500 \mu \mathrm{~L}$ aliquots are transferred to screw cap 5 mm NMR tubes which are subsequently cooled to $-78^{\circ} \mathrm{C}$. Excess acetyl bromide is added by micropipette to tubes at $-78^{\circ} \mathrm{C}$ under N_{2} just before the kinetic experiment is started. The tube is shaken to mix the reagents and inserted into a pre-cooled NMR probe at $0^{\circ} \mathrm{C}$. Unlike the previous experiments, the samples remain in the probe throughout the data collection period. The probe temperature is regulated by the instrument software and gave excellent
stability throughout the experiment. Concentrations of reactants and products are determined from integration of the spectra. Pseudo first order rate constants are calculated from plots of $\ln k_{o b s}$ vs time with errors calculated using Excel.

Kinetics of Phosphine Substitution in 4

The same procedure used to prepare samples for halide exchange measurements is applied to phosphine exchange studies between $4(6.1 \mathrm{mM})$ and excess $\mathrm{PMePh}_{2}(50 \mathrm{mM})$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F} / 10 \% \mathrm{C}_{6} \mathrm{D}_{6}$ in flame sealed NMR tubes.
Concentrations of reactants and products are determined from integration of the spectra. Pseudo first order rate constants are calculated from plots of $\ln k_{o b s}$ vs time with errors calculated using Excel.

Computational Data

Cartesian coordinates of all the structures optimized using Kohn-Sham density functional theory (M06/def2-SVP) in the xyz format are reported in a separate zip file as part of the supplementary materials.

Figure S1: a. 5 mm NMR tube containing a solution of 1 and CBr_{4} in fluorobenzene $/ \mathrm{C}_{6} \mathrm{D}_{6}$; b. sample cooled to $78^{\circ} \mathrm{C}$; c. sample being sealed under vacuum.

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between styrene and bromoform catalyzed by $\mathbf{1}$ and AIBN in toluene-d ${ }^{8}$.
(a) $<1 \mathrm{~h}$ at room temperature; (b) after heating at $87^{\circ} \mathrm{C}$ for 72 h .
(a)

(b)

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between styrene and carbon tetrabromide catalyzed by $\mathbf{1}$ and AIBN in toluene- d^{8}. (a) $<1 \mathrm{~h}$ at room temperature; (b) after heating at $54^{\circ} \mathrm{C}$ for 1 h .

(a)

(b)

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between styrene and ethyl dibromoacetate catalyzed by $\mathbf{1}$ and AIBN in toluene- d^{8}. (a) $<1 \mathrm{~h}$ at room temperature; (b) after heating at $87^{\circ} \mathrm{C}$ for 18 h .

(a)

(b)

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between styrene and ethyl tribromoacetate catalyzed by $\mathbf{1}$ and AIBN in toluene- d^{8}. (a) $<1 \mathrm{~h}$ at room temperature; (b) after heating at $87^{\circ} \mathrm{C}$ for 18 h .

Figure S6: Concentration changes for $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\left(1\right.$, blue diamonds) and $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}(\mathbf{3}$, orange squares and grey triangles) vs time for halide exchange reaction with CBr_{4} and CCl_{4}, respectively.

Figure S7: Concentration of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathbf{1})$ vs time (s) under conditions for ATRA of CBr_{4} to styrene.

Figure S8: from left to right: solution of 1 and CBr_{4} in fluorobenzene/ $\mathrm{C}_{6} \mathrm{D}_{6}$ before reaction, solution of $\mathbf{1}$ and CBr_{4} in fluorobenzene $/ \mathrm{C}_{6} \mathrm{D}_{6}$ after heating to produce $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}$, and leaky tube containing a solution of $\mathbf{1}$ and CBr_{4} in fluorobenzene $/ \mathrm{C}_{6} \mathrm{D}_{6}$ after heating.

Figure S9: Plot of $\ln [\mathbf{1}]$ vs time (s) for the reaction between $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and a. $\mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et} \mathrm{b}$. $\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et} \mathrm{c}$. CBr_{4} d. CHBr_{3} in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F} / 10 \% \mathrm{C}_{6} \mathrm{D}_{6}$ at $34^{\circ} \mathrm{C}$ showing the effects of radical initiators azo bis(isobutyronitrile) (AIBN) and dihydroanthracene (DHA) and radical inhibitor duraquinone (DQ); e. $\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and CBr_{4}

b.

c.

d.

e.

f.

Figure S10: Plots of $k_{\text {obs }}$ vs [RBr$]$ for the reaction between $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and RBr at $34^{\circ} \mathrm{C}$ in fluorobenzene $/ 10 \%$ benzene-d ${ }^{6}$. a. $\mathbf{1}, \mathrm{RBr}=\mathrm{CBr}_{4}$ b. $\mathbf{1}, \mathrm{RBr}=\mathrm{CHBr}_{3} ; \mathrm{c} . \mathbf{1}, \mathrm{RBr}=\mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et}$; d. $1, \mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}$; e. $\mathbf{4}, \mathrm{RBr}=\mathrm{CBr}_{4}$; f. $\mathbf{4}, \mathrm{RBr}=\mathrm{CBr}_{4}$ at $25^{\circ} \mathrm{C}$.

Figure S11: Eyring plot $\ln k_{\text {obs }} / \mathrm{T}$ vs $1 / \mathrm{T}$ for the reaction between $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and CHBr_{3} in fluorobenzene $/ 10 \%$ benzene- d^{6}

RBr, catalyst	T (${ }^{\circ} \mathrm{C}$)	$\mathrm{k}_{2}\left(\mathrm{x}^{10^{4}} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$\mathrm{k}_{-2}\left(\mathrm{x} 10^{4} \mathrm{~s}^{-1}\right)$
$\mathrm{CBr}_{3} \mathrm{CO}_{2} \mathrm{Et}, \mathbf{1}$	34	21 ± 1	-0.004 ± 0.088
$\mathrm{CBr}_{4}, 3$	34	11.2 ± 2.5	0.18 ± 0.34
	26	6.35 ± 0.94	0.57 ± 0.09
$\mathrm{CBr}_{4}, 1$	34	6.08 ± 0.63	0.35 ± 0.05
$\mathrm{CHBr}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathbf{1}$	34	2.94 ± 0.29	-0.02 ± 0.06
$\mathrm{CHBr}_{3}, 1$	34	0.0509 ± 0.0017	0.00185 ± 0.00036
${ }^{\mathrm{n}} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}, \mathbf{1}^{¥}$	44.5	0.12 ± 0.011	0.0046 ± 0.0031
${ }^{¥}$ see reference 3			

References

1. K. Chaiseeda, e-EROS Encylopedia of reagents for Organic Synthesis 2010, 1-2.
2. M. I. Bruce, C. Hameister, A. G. Swincer, and R. C. Wallis, Inorg. Synth. 1990, 28, 270.
3. B. S. Rich, N. B. Bissonnette, A. Duran Balsa, M. Yang, H. Meikle, N. Chintala, S. S. Dong, and R. U. Kirss, New. J. Chem. 2022, 46, 6603-6608.
4. S-H. Li, Y. Liu, Y-Y Yanf, Y-X Zhang, Q-D Xu, So $-\mathrm{M} \mathrm{Hu}, \mathrm{X}-\mathrm{T}$ Wu and T-L Sheng, Polyhedron 2019, 173, 114109.
5. P. Chaibuth, N. Chuaytanee, J. Hojitsiriyanont, K. Chianok, S. Wacharasindhu, O. Reiser, and M. Sukwattanasinitt, New J. Chem. 2022, 46, 12158-12168.
6. A. R. P. Nair, T. H. Kim, B. J. Frost, Organometallics, 2009, 28, 4681-4688.
7. a. Y-H. Zhao, H-Y Li, D. J. Young, X. Cao, D-L. Zhu, Z-G. Ren, and H-X. Li, Dalton Trans. 2023, 52, 8142-8154; b. K. Matsuo, E. Yamaguchi, and A. Iton, J. Org. Chem. 2020, 85, 10574-10583.
