Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Highly Efficient and Reusable Amorphous Pd(II)/Crystal Pd(0)-Grafted Porous Polymer Framework for Catalytic CO₂ Cycloaddition

Somnath Sarkar,^a Swarbhanu Ghosh,^b Titu Mondal,^a Aslam Khan^c and Sk. Manirul Islam^{a,*}

^aDepartment of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India ^bDepartment of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada ^cCollege of Science, King Saud University, Riyadh, 11451, Saudi Arabia

*To whom correspondence should be addressed. E-mail: <u>manir65@rediffmail.com</u>

Number of pages: 13

Number of figures: 4

Number of Table: 1

Table of Contents

Materials and Equipments	S2
FT-IR of recovered Pd@3D PPF	S2
PXRD pattern of the recovered Pd@3d PPF	S3
SEM Images of recovered Pd@3D PPF	S3
XPS spectra of the recovered catalyst	S4
Comparison of Pd@3D PPF with other catalysts	S4
NMR Spectra of compound 2a	S5
NMR Spectra of compound 2b	S6
NMR Spectra of compound 2c	S7
NMR Spectra of compound 2d	S 8
NMR Spectra of compound 2e	S9
NMR Spectra of compound 2f	S10
NMR Spectra of compound 2g	S11
References	S12

Materials and Equipments

All oxiranes were purchased from a commercial supplier. ¹H NMR spectra were recorded on Bruker DPX-300/500 NMR spectrometer at a temperature of 298 K.

A D8 Advance SWAX diffractometer from Bruker-AXS utilizing a constant current (40 mA) and voltage (40 kV) was used to obtain the PXRD pattern of the Pd nanoparticles decorated 3D PPF catalyst. The XRD machine was calibrated with silicon sample utilizing Ni-filtered Cu K α radiation (λ =0.15406 nm). Quantachrome Autosorb-iQ (USA) surface area analyser was used for N₂ sorption analysis at 77 K. The sample was activated at 403 K for 12 h under high vacuum before the adsorption of gas. Pore size distribution was obtained by using NLDFT method employing the carbon/cylindrical pore model as reference. JEOL JEM 6700 field emission-scanning electron microscope (FE SEM) was employed to analyze particle size and morphology of Pd@3D PPF. FT-IR (Nicolet MAGNA-FT IR 750 spectrometer Series II) was used to understand the coordination. ¹H spectra of the desired products were kept on a Bruker DPX-300/500 NMR spectrometer.

Figure S1. FT-IR spectrum of the recovered catalyst (Pd@3D PPF) after 5th run.

Figure S2. PXRD pattern of the recovered Pd@3d PPF after 5th run.

The PXRD pattern of the recovered Pd@3D PPF catalyst confirms the retention of its original structural Integrity.

Figure S3. SEM image of the recovered Pd@3D PPF after 1st run

Figure S4. XPS spectra of the recovered catalyst

Table S1.	Comparison	of Pd@3D	PPF	with	other	heterogeneous	catalysts	for	the
coupling c	of epichlorohy	drin and CO	2						

Entry	Catalyst	Pressure	Cocatalyst	Temperature	Time	yield	References
		(MPa)		(⁰ C)	(h)	(%)	
1	MOF-Zn-1	1.0	TBAB	100	3	97	1
2	UiO-66-OH	1.0	TBAI	140	2	90	2
3	Gd-MOF	2.0	TBAB	80	5	99.1	3
4	MOF-5	0.1	TBAB	50	12	93	4
5	F-IRMOF-3	2.0		140	1.5	80	5
6	UMCM-1-NH ₂	1.2	TBAB	rt	24	78	6
7	Pd@3D PPF	0.1	TBAB	rt	10	99	This work

¹H NMR spectra of 4-(chloromethyl)-1,3-dioxolan-2-one (2c):^[7]

¹**H NMR (400 MHz, CDCl₃):** δ 5.01 – 4.95 (m, 1H), 4.57 – 4.52 (m, 1H), 4.33 (dd, *J* = 8.9, 5.7 Hz, 1H), 3.81 – 3.66 (m, 2H).

¹H NMR spectra of 4-((allyloxy)methyl)-1,3-dioxolan-2-one (2e):^[7]

¹**H NMR (400 MHz, CDCl₃ (*)):** δ 5.86 (ddt, *J* = 16.3, 10.8, 5.6 Hz, 1H), 5.31 – 5.20 (m, 2H), 4.84 – 4.77 (m, 1H), 4.52 – 4.37 (m, 2H), 4.05 (d, *J* = 5.6 Hz, 2H), 3.64 (ddt, *J* = 14.8, 11.1, 5.3 Hz, 2H).

¹H NMR spectra of Hexahydro-benzo[1,3]dioxol-2-one (2f):^[8]

¹**H NMR (400 MHz, CDCl₃):** δ 4.69 – 4.63 (m, 2H), 1.96 – 1.77 (m, 4H), 1.57 (dq, *J* = 14.2, 5.9 Hz, 2H), 1.39 (dt, *J* = 10.2, 5.8 Hz, 2H).

¹H NMR spectra of 4-phenyl-1,3-dioxolan-2-one (2g):^[7]

¹**H NMR (400 MHz, CDCl₃):** δ 7.40 – 7.26 (m, 5H), 5.61 (t, *J* = 8.0 Hz, 1H), 4.73 (t, *J* = 8.4 Hz, 1H), 4.26 (dd, *J* = 8.7, 7.8 Hz, 1H).

¹H NMR spectra of 4-methyl-1,3-dioxolan-2-one (2a):^[8]

¹**H NMR (400 MHz, CDCl₃):** δ 4.68 – 4.60 (m, 1H), 4.31 (td, *J* = 8.4, 1.3 Hz, 1H), 4.16 (ddd, *J* = 8.1, 5.9, 1.3 Hz, 1H), 1.81 (d, *J* = 1.6 Hz, 3H).

¹H NMR spectra of 4-(phenoxymethyl)-1,3-dioxolan-2-one (2i):^[8]

¹**H NMR (400 MHz, CDCl₃):** δ 7.33 – 7.28 (m, 2H), 7.04 – 6.89 (m, 3H), 5.04 – 4.97 (m, 1H), 4.60 – 4.46 (m, 2H), 4.24 – 4.03 (m, 2H).

¹H NMR spectra of 4-(4-(oxiran-2-yl)butyl)-1,3-dioxolan-2-one (2b):^[9]

¹H NMR (400 MHz, CDCl₃ (*)): δ 4.67-4.63 (m, 2H), 4.46 (td, J = 8.2, 2.3 Hz, 2H), 4.01 – 3.97 (m, 2H), 1.70 – 1.38 (m, 8H).

References:

- 1. J. Lan, M. Liu, X. Lu, X. Zhang and J. Sun, ACS Sustainable Chem. Eng., 2018, **6**, 8727-8735.
- 2. J. Noh, Y. Kim, H. Park, J. Lee, M. Yoon, M. H. Park, Y. Kim and M. Kim, *J. Ind. Eng. Chem.*, 2018, **64**, 478-483.
- 3. Z. Xue, J. Jiang, M.-G. Ma, M.-F. Li and T. Mu, ACS Sustainable Chem. Eng., 2017, 5, 2623-2631.
- 4. J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang and B. Han, *Green Chem.*, 2009, **11**, 1031-1036.
- 5. X. Zhou, Y. Zhang, X. Yang, L. Zhao and G. Wang, *J. Mol. Catal. A: Chem.*, 2012, **361**, 12-16.
- 6. R. Babu, A. C. Kathalikkattil, R. Roshan, J. Tharun, D.-W. Kim and D.-W. Park, *Green Chem.*, 2016, **18**, 232-242.

7. S. Motokucho, Y. Takenouchi, R. Satoh, H. Morikawa and H. Nakatani, *ACS Sustainable Chem. Eng.*, 2020, **8**, 4337-4340.

- 8. S. Sarkar, S. Ghosh and S. M. Islam, Org. Biomol. Chem., 2022, **20**, 1707-1722.
- 9. J. Steinbauer and T. Werner, *ChemSusChem*, 2017, **10**, 3025-3029.