Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Engineering crystal planes and band structure of 2D tin sulfide nanosheets and its photocatalytic degradation performance

Zhixin Jia,^a Xiaofeng shuai,^b Ruihua Zhao,^{b,c} Jianping Du*^{a, d}

^a College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R.

China

^bCollege of Chemical Engineering and Technology, Taiyuan University of Technology,

Taiyuan University of Technology, Taiyuan 030024, P. R. China.

^c Shanxi Kunming Tobacco Co., Ltd., 21 Dachang South Road, Taiyuan 030032, P. R. China

^d Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, P. R. China

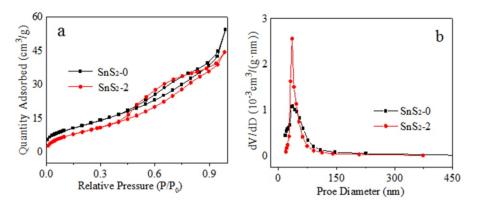


Figure S1 (a) N_2 adsorption-desorption isotherm and (b) pore size distribution of SnS_2 -0 and SnS_2 -2

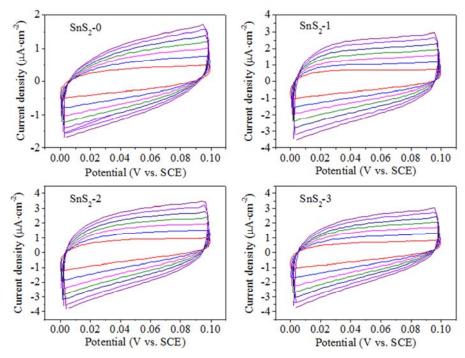


Figure S2 Cyclic voltammetry curves of SnS₂-x at different scan rates

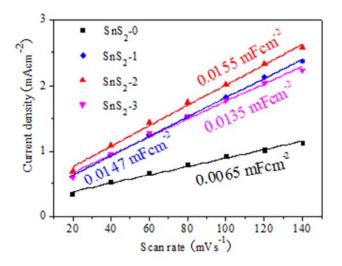


Figure S3 The linear relationship between the current density and scan rate

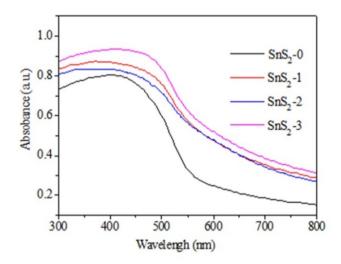


Figure S4 UV-Vis diffuse reflectance spectra (DRS) of different SnS2 materials

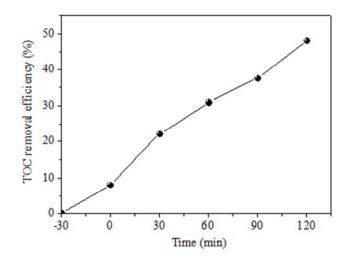


Figure S5 TOC removal efficiency of SnS₂-2 during the degradation of RhB

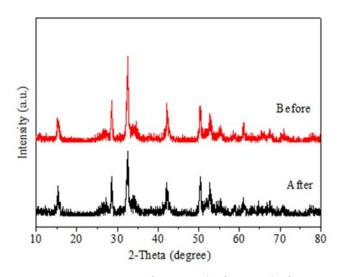


Figure S6 XRD patterns of SnS₂-2 before and after reactions

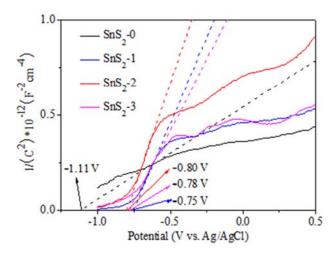


Figure S7 Mott-Schottky plot of SnS₂-x materials

Table S1 the band gap	, conduction band	l and valence band	potential of SnS ₂ -x
-----------------------	-------------------	--------------------	----------------------------------

Catalyst	$E_{ m g}$	E_{CB}	$E_{ m VB}$
SnS2-0	1.91eV	-1.01eV	0.9eV
SnS2-1	1.87eV	-0.65eV	1.22eV
SnS2-2	1.42eV	-0.70eV	0.72eV
SnS2-3	1.55eV	-0.68eV	0.87eV

Table S2 Photocatalytic activity of SnS_2 compared with other reported materials

	Catal.	Rh.B		Time (min)/	
Photocatalysts	dosage	Concentration	Light Source	Degradation	Ref.
	$(g L^{-1})$	$(mg L^{-1})$		(%)	
SnO ₂ /ZnS	1	10	500W Xe	150/96	[1]
5110 <u>2</u> /2115	1	10	lamp	150/90	[1]
SnS_2/NH_2 -MIL-125	1	1 40	300W Xe	80/90.5	[2]
(Ti)	1	υ	lamp		
			80 W		
SnS nanoparticles	1	14.4	high-pressure	180/90.97	[3]
Sils nanoparticles	1	1 1. 1	mercury	100/90.97	[9]
			lamp		
g-C ₃ N ₄ /BiOBr	1	10	300W Xe	150/97.9	[4]
g C3114/D10D1	1	10	lamp	100/ 97.9	[,]
			10 W		
BiFeO ₃ /SnS ₂ NCs	0.1	15	tungsten	120/78	[5]
			halogen lamp		
SnO ₂ /TiO ₂ /PVDF	N.A.	A. 10	250W Xe	240/92	[6]
	1 1.2 1.	10	lamp	210/22	[0]
SnS ₂ -CdO	0.06	12	350W Xe	210/86.11	[7]
	0.00	1 4	lamp		L′J

ZnO/CA/SnS	0.6	4.8	Sunlight	175/99	[8]
SnS ₂ -2	0.5	20	300W Xe lamp	120/94.5	This work

References

[1] L. Hu, F. Chen, P. Hu, L. Zou, X. Hu, Hydrothermal synthesis of SnO₂/ZnS nanocomposite as a photocatalyst for degradation of Rhodamine B under simulated and natural sunlight, J. Mol. Catal. A Chem., 2016, 411, 203-213.

[2] L. Ling, Y. Tu, X. Long, Q. Li, J. Gu, N. Liu, Z. Li, The one-step synthesis of multiphase SnS₂ modified by NH₂-MIL-125(Ti) with effective photocatalytic performance for Rhodamine B under visible light, Opt. Mater., 2021, 111, 110564.

[3] A.E. Oluwalana, P.A. Ajibade, Preparation and morphological studies of tin sulfide nanoparticles and use as efficient photocatalysts for the degradation of rhodamine B and phenol, Nanotechnol. Rev., 2022, 11, 883-896.

[4] M. Zhou, W. Huang, Y. Zhao, Z. Jin, X. Hua, K. Li, L. Tang, Z. Cai, 2D g-C₃N₄/BiOBr heterojunctions with enhanced visible light photocatalytic activity, J. Nanopart. Res., 2020, 22, 13.

[5] M. Arunkumar, S. Veerakumar, V. Mohanavel, J. Vairamuthu, V. Vijayan, N. Senthilkumar, A Novel Visible Light-Driven p-Type BiFeO₃/n-Type SnS₂ Heterojunction Photocatalyst for Efficient Charge Separation and Enhanced Photocatalytic Activity, J. Clust. Sci., 2021, 32, 1431-1439.

[6] W. Hong, C. Li, T. Tang, H. Xu, Y. Yu, G. Liu, F. Wang, C. Lei, H. Zhu, The photocatalytic activity of the SnO₂/TiO₂/PVDF composite membrane in rhodamine B degradation, New J. Chem., 2021, 45, 2631-2642.

[7] J. Srivind, V.S. Nagarethinam, M. Suganya, S. Balamurugan, D. Prabha, A.R. Balu, Visible light irradiated photocatalytic performance of SnS₂-CdO nanocomposite against the degradation of rhodamine B (cationic) and congo red (anionic) dyes, Mater. Sci. Eng. B, 2020, 255, 14530.

[8] S. Jayswal, R.S. Moirangthem, Construction of a solar spectrum active SnS/ZnO p–n heterojunction as a highly efficient photocatalyst: the effect of the sensitization process on its performance, New J. Chem., 2018, 42, 13689-13701.