Experimental Section

Synthesis of D-BN

100 mg of as-received BN nanoplates were exfoliated to BN nanosheets in 50 mL of absolute ethyl alcohol under ultrasonication for 5 h. The obtained BN nanosheets were collected by centrifugation, washed three times with deionized water/ethanol and vacuum-dried overnight. The dried BN nanosheets were then subjected to Ar plasma treatment for 10 min in a plasma system (13.56 MHz) to obtain D-BN.

Electrochemical experiment

Electrochemical measurements were conducted under ambient conditions on a CHI-760E electrochemical workstation. The graphite rod, Ag/AgCl, and CC-loaded catalyst served as the reference, counter, and working electrodes, respectively. All potentials were referenced to reversible hydrogen electrode (RHE) by *E* (V vs. RHE) $= E$ (V vs. Ag/AgCl) + 0.198 V + 0.059 \times pH. The electrocatalytic NORR measurements were conducted within a gas-tight H-cell, using NO-saturated 0.5 M $Na₂SO₄$ electrolyte. Before NRR testing, the feeding gases were purified using two glass bubblers filled with 4 M KOH solution[[1](#page-11-0)]. Furthermore, the cathodic compartment was flushed with Ar for a minimum of 30 minutes to eliminate any remaining oxygen. Throughout the NRR electrolysis process, a continuous flow of NO (99.9%) gas was introduced into the cathodic chamber at a rate of 20 mL min⁻¹. Subsequent to an hour of electrolysis, both the aqueous and gaseous products were identified using colorimetric methods and gas chromatography (GC), respectively.

Determination of NH³

The generated NH_3 was determined by an indophenol blue method[\[2](#page-11-1)]. Typically, 0.5 mL of electrolyte was extracted from the electrochemical reaction vessel and subsequently diluted tenfold with deionized water. Then 2 mL of diluted solution was removed into a clean vessel followed by sequentially adding NaOH solution (2 mL, 1 M) containing C₇H₆O₃ (5 wt.%) and C₆H₅Na₃O₇ (5 wt.%), NaClO (1 mL, 0.05 M), and $C_5FeN_6Na_2O$ (0.2 mL, 1wt.%) aqueous solution. After incubation for 2 hours at room temperature. The mixed solution was measured in UV-Vis at 655 nm. The concentration-absorbance curves were calibrated using a range of concentrations in a standard NH₄Cl solution. Subsequently, the NH₃ yield rate and Faradaic efficiency (FE_{NH3}) were calculated using the following equation:

NH₃ yield =
$$
(c \times V) / (17 \times t \times A)
$$
 (1)

Faradaic efficiency was calculated by the following equation:

$$
FENH3 = (5 \times F \times c \times V) / (17 \times Q) \times 100\%
$$
 (2)

where c (μ g mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of electrolyte in the cathode chamber, $t(s)$ is the electrolysis time and A is the surface area of CC (1×1 cm²), F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the total quantity of applied electricity.

Determination of N2H⁴

 N_2H_4 in electrolyte was quantitatively determined by a Watt and Chrisp method^{[[3\]](#page-11-2)}. To prepare the coloring solution, a combination of 300 mL $C₂H₅OH$, 5.99 $g \text{C}_9\text{H}_{11}$ NO, and 30 mL HCl was mixed. Subsequently, 5 mL of the coloring solution was introduced to 5 mL of the electrolyte. After the incubation for 20 min at room temperature, the mixed solution was subjected to UV-vis measurement using the absorbance at 455 nm wavelength. The concentration-absorbance curve is calibrated by a series of concentrations of standard N_2H_4 solutions.

Characterizations

X-ray diffraction (XRD) was performed on a Rigaku D/max 2400 diffractometer. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were performed on a Tecnai G² F20 microscope. X-ray photoelectron spectroscopy (XPS) analysis was collected on a PHI 5702 spectrometer. Electron spin resonance (EPR) spectra were recorded on a Bruker EPR-300 spectrometer.

Calculation details

Spin-polarized density functional theory (DFT) calculations were carried out using the Cambridge sequential total energy package (CASTEP) with projector augmented wave pseudopotentials. The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional was used for the exchange-correlation potential. The van der Waals interaction was described by using the empirical correction in Grimme's scheme (DFT+D). During the geometry optimization, the electron wave functions were expanded using plane waves with a cutoff energy of 470 eV. The convergence tolerance was set to be 1.0×10^{-5} eV for energy and 0.02 eV \AA ⁻¹ for force. The $3 \times 3 \times 1$ Monkhorst-Pack mesh was used in Brillouin zone sampling. BN (001) was modeled by a 2×2 supercell, and a vacuum region of 15 Å was used to separate adjacent slabs.

The adsorption energy (ΔE) is defined as[[4\]](#page-11-3)

$$
\Delta E = E_{\text{ads/slab}} - E_{\text{ads}} - E_{\text{slab}} \tag{3}
$$

where $E_{\text{ads/slab}}$, E_{ads} and E_{slab} are the total energies for adsorbed species on slab, adsorbed species and isolated slab, respectively.

The Gibbs free energy (ΔG , 298 K) of reaction steps is calculated by[[4\]](#page-11-3)

$$
\Delta G = \Delta E + \Delta ZPE - T\Delta S \tag{4}
$$

where Δ*E* is the adsorption energy, Δ*ZPE* is the zero-point energy difference and *T*Δ*S* is the entropy difference between the gas phase and adsorbed state.

Fig. S1. (a) UV-vis absorption spectra of $NH₄$ ⁺ assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of NH₃ concentrations.

Fig. S2. (a) UV-vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S3. Amounts of produced NH₃ over D-BN under different conditions: (1) electrolysis in NO-saturated solution at -0.7 V, (2) electrolysis in Ar-saturated solution at -0.7 V, (3) electrolysis in $NO₂$ -containing solution at open-circuit potential (OCP), (4) before electrolysis.

Fig. S4. ¹H NMR spectra of ¹⁵NH₄⁺ standard sample and those fed by ¹⁵NO after NORR electrolysis on D-BN at -0.7 V

Fig. S5. Cycling test of D-BN at -0.7 V.

Fig. S6. Optimized structures of the reaction intermediates on pristine BN.

Fig. S7. Optimized structures of the reaction intermediates on D-BN.

Catalyst	Electrolyte	NH ₃ yield rate (µmol h^{-1} cm ⁻²)	FE _{NH3} $(\%)$	Potential (V vs. RHE)	Ref.
NiO/TM	0.1 M Na ₂ SO ₄	125.3	90	-0.6	$[5]$
Ni@NC	0.1 M HCl	34.6	72.3	0.16	[6]
Bi NDs	0.1 M Na ₂ SO ₄	70.2	89.2	-0.5	$[7]$
$Cu2O@CoMN2O4$	0.1 M Na ₂ SO ₄	94.18	75.05	-0.9	[8]
$CoS1-x$	0.2 M Na ₂ SO ₄	44.67	53.62	-0.4	$[9]$
RuGa	$0.1 M K_2 SO_4$	160.3	72.3	-0.2	$[10]$
NiFe-LDH	0.2 M $Li2SO4$	112	82	-0.7	$[11]$
a-B _{2.6} C@TiO ₂ /Ti	0.1 M Na ₂ SO ₄	216.4	87.6	-0.9	$[12]$
$Ru_{0.05}Cu_{0.95}$	0.05 M Na ₂ SO ₄	17.68	64.9	-0.5	$[13]$
HCNF	0.2 M Na ₂ SO ₄	22.35	88.33	-0.6	$[14]$
Ni ₂ P/CP	0.1 M HCl	33.47	76.9	-0.2	$[15]$
CoP/TM	0.2 M Na ₂ SO ₄	47.22	88.3	-0.2	$[16]$
D-BN	0.5 M Na ₂ SO ₄	192.4	92.1	-0.7	This work

Table S1. Comparison of the optimum NH₃ yield rate and NH₃-Faradic efficiency

References

- [1].L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin, L. Yue, T. Li, Q. Liu, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, X. Guo, D. Ma and X. Sun, *Angew. Chem. Int. Edit.*, 2021, **60**, 25263- 25268.
- [2].P. Li, Z. Jin, Z. Fang and G. Yu, *Energy Environ. Sci.*, 2021, **14**, 3522-3531.
- [3].G. W. Watt and J. D. Chrisp, *Anal. Chem.*, 1952, **24**, 2006-2008.
- [4].Y. Zhang, J. Xiang, K. Chen, Y.-L. Guo, D. Ma and K. Chu, *Chem. Commun.*, 2023, **59**, 8961-8964.
- [5].P. Liu, J. Liang, J. Wang, L. Zhang, J. Li, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, Q. Liu, A. M. Asiri, Q. Kong and X. Sun, *Chem. Commun.*, 2021, **57**, 13562-13565.
- [6].S. Sethuram Markandaraj, T. Muthusamy and S. Shanmugam, *Adv. Sci.*, 2022, **9**, 2201410.
- [7].Y. Lin, J. Liang, H. Li, L. Zhang, T. Mou, T. Li, L. Yue, Y. Ji, Q. Liu, Y. Luo, N. Li, B. Tang, Q. Wu, M. S. Hamdy, D. Ma and X. Sun, *Mater. Today Phys.*, 2022, **22**, 100611.
- [8].C. Bai, S. Fan, X. Li, Z. Niu, J. Wang, Z. Liu and D. Zhang, *Adv. Funct. Mater.*, 2022, **32**, 2205569.
- [9].L. Zhang, Q. Zhou, J. Liang, L. Yue, T. Li, Y. Luo, Q. Liu, N. Li, B. Tang, F. Gong, X. Guo and X. Sun, *Inorg. Chem.*, 2022, **61**, 8096-8102.
- [10]. H. Zhang, Y. Li, C. Cheng, J. Zhou, P. Yin, H. Wu, Z. Liang, J. Zhang, Q. Yun, A.-L. Wang, L. Zhu, B. Zhang, W. Cao, X. Meng, J. Xia, Y. Yu and Q. Lu, *Angew. Chem. Int. Ed.*, 2023, **62**, e202213351.
- [11]. G. Meng, T. Wei, W. Liu, W. Li, S. Zhang, W. Liu, Q. Liu, H. Bao, J. Luo and X. Liu, *Chem. Commun.*, 2022, **58**, 8097-8100.
- [12].J. Liang, P. Liu, Q. Li, T. Li, L. Yue, Y. Luo, Q. Liu, N. Li, B. Tang, A. A. Alshehri, I. Shakir, P. O. Agboola, C. Sun and X. Sun, *Angew. Chem. Int. Ed.*, 2022, **61**, e202202087.
- [13].J. Shi, C. Wang, R. Yang, F. Chen, N. Meng, Y. Yu and B. Zhang, *Sci. China Chem.*, 2021, **64**, 1493-1497.
- [14]. L. Ouyang, Q. Zhou, J. Liang, L. Zhang, L. Yue, Z. Li, J. Li, Y. Luo, Q. Liu, N. Li, B. Tang, A. Ali Alshehri, F. Gong and X. Sun, *J. Colloid Interf. Sci.*, 2022, **616**, 261-267.
- [15]. T. Mou, J. Liang, Z. Ma, L. Zhang, Y. Lin, T. Li, Q. Liu, Y. Luo, Y. Liu, S. Gao, H. Zhao, A. M. Asiri, D. Ma and X. Sun, *J. Mater. Chem. A*, 2021, **9**, 24268-24275.
- [16].J. Liang, W.-F. Hu, B. Song, T. Mou, L. Zhang, Y. Luo, Q. Liu, A. A. Alshehri, M. S. Hamdy, L.- M. Yang and X. Sun, *Inorg. Chem. Front.*, 2022, **9**, 1366-1372.