Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Mn(OAc)₃ promoted cross-coupling reaction of disulfides

with dialkyl phosphites

Wen-Juan Wang*^{a,b}, Jia Sun^a, Jian-Xin Wan^a, Xi-Cun Wang*^b

^aGanSu Medical College, Pingliang, Gansu 744000, P. R. China

^bCollege of Chemistry and Chemical Engineering, Northwest Normal University,

Lanzhou, Gansu 730070, P. R. China.

Email: wwj5569@163.com

Contents

1. General information	1
2. Experimental procedures	1
3. Characterization of products	1
4. ¹ H and ¹³ C NMR spectra	9

1. General information

The ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III-600 MHz spectrometer with CDCl₃ as the solvent. The chemical shifts in ¹H NMR spectra were determined with Si(CH₃)₄ as the internal standard ($\delta = 0.00$ ppm); the chemical shifts in ¹³C NMR spectra were determined based on the chemical shift of CDCl₃ ($\delta = 77.00$ ppm). The coupling constants (*J* value) are reported in Hz (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet or unresolved, br = broad signal). The high resolution mass spectra (HRMS) were measured on a Thermo Scientific ORBITRAP ELITE by ESI. Flash column chromatography (FCC) was conducted on silica gel (200 – 300 mesh).

 $Mn(OAc)_3 \cdot 2H_2O$, DTBP, TBHP were purchased from Energy Chemical and used without further treatment. Unless otherwise noted, all other materials were obtained from commercial suppliers, and were used without further purification.

2. Experimental procedures

Synthesis of starting material 1a:

Step 1

To the mixture of Benzaldehyde (6.3672 g, 60 mmol), Ethyl acetoacetate (7.8084 g, 60 mmol), thiocarbamide (5.480g, 72 mmol) in CH_3CH_2OH (15.0 mL) was added 20 drops 98% H_2SO_4 in 100mL round-bottom flask. The reaction mixture was heated to 80 °C and stirred for 8 h. Extracting by Buchner funnel and dried white solid. Step 2

To the mixture of ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine -5-carboxylate **0a** (1.470 g, 5 mmol), 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (1.135g, 5 mmol) HNa (0.120 g, 5 mmol), in dioxane (15.0 mL) in 100mL round-bottom flask. The reaction mixture at room temperature and stirred for 8 h. Then, 2mL diluted hydrochloric acid were added to the mixture to quench the reaction and extracted with ethyl acetate (3×100 mL). The combined organic layers were washed with aqueous NaHCO₃ and brine, dried over MgSO₄, filtered, and the volatiles were removed in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate/ petroleum ether 1:10) to give the **1a**.

Synthesis of product 3a

A 10 mL tube equipped with a magnetic stirring bar and a rubber stopper was charged with 1,2-Di(pyrimidin-2-yl) Disulfides **1a** (109.2 mg, 0.2 mmol), dialkyl phosphite ester **2a** (60.72 mg, 0.44 mmol), $Mn(OAc)_3 \cdot 2H_2O$ (26.8 mg, 0.2 mmol, 1 equiv.) and HOAc (2 mL). The mixture was stirred at 80 °C (oil bath) for 10 h and the reaction was monitored by TLC analysis. After the reaction mixture was cooled to room temperature, it was quenched with aqueous NH₄Cl (2 mL), and the product was extracted with ethyl acetate (3×5 mL). The combined organic phases were washed with brine (3×5 mL), and dried over anhydrous NaSO₄. The solvent was removed under reduced pressure with a rotary evaporator to give the crude product, which was purified by flash chromatography (PE and EA) to afford the corresponding products.

3. Characterization of products

Ethyl 2-(ethylthio)-4-methyl-6-phenylpyrimidine-5-carboxylate (3a).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 55 mg, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ 7.64 – 7.62 (m, 2H), 7.49 – 7.42 (m, 3H), 4.16 (t, *J* = 7.2 Hz, 1H), 3.22 (t, *J* = 7.2 Hz, 1H), 2.56 (s, 3H), 1.42 (d, *J* = 7.2 Hz, 3H), 1.04 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.24, 168.13, 165.50, 163.59, 137.79, 130.01, 128.40, 128.28, 120.93, 61.66, 25.35, 22.61, 14.50, 13.59; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₆H₁₉N₂O₂S 303.1162; Found 303.1165.

Ethyl 2-(ethylthio)-4-methyl-6-(p-tolyl)pyrimidine-5-carboxylate (3b).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 56 mg, yield: 89%; ¹H NMR (600 MHz, cdcl₃) δ 7.57 – 7.52 (m, 2H), 7.24 – 7.22 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.20 (q, *J* = 7.2 Hz, 2H), 2.54 (s, 3H), 2.40 (s, 3H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.05, 168.33, 165.27, 163.35, 140.36, 134.85, 129.13, 128.27, 120.75, 61.64, 25.32, 22.57, 21.37, 14.52, 13.67; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₇H₂₁N₂O₂S 317.1318; Found 317.1313.

Ethyl 2-(ethylthio)-4-methyl-6-(m-tolyl)pyrimidine-5-carboxylate (3c).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 56 mg, yield: 88%; ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.33 – 7.31 (m, 1H), 7.30 – 7.26 (m, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.22 (q, *J* = 7.2 Hz, 2H), 2.55 (s, 3H), 2.40 (s, 3H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.06 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.16, 168.18, 165.36, 163.75, 138.12, 137.69, 130.78, 128.90, 128.30, 125.40, 120.97, 61.62, 29.68, 22.61, 21.40, 14.50, 13.62; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₇H₂₁N₂O₂S 317.1318; Found 317.1321.

Ethyl 2-(ethylthio)-4-(4-fluorophenyl)-6-methylpyrimidine-5-carboxylate (3d).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 59 mg, yield: 92%; ¹H NMR (600 MHz, CDCl₃) δ 7.65 – 7.63 (m, 2H), 7.14 – 7.11 (m, 2H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.21 (q, *J* = 7.2 Hz, 2H), 2.55 (s, 3H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.30, 168.06, 165.59, 164.78, 162.32, 133.83, 130.40, 130.38, 120.75, 115.61, 115.47, 61.76, 25.35, 22.63, 14.46, 13.70; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.69. HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₆H₁₈FN₂O₂S 321.1068; Found 321.1064.

Ethyl 4-(4-chlorophenyl)-2-(ethylthio)-6-methylpyrimidine-5-carboxylate (3e).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 61 mg, yield: 90%; ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 7.24 – 7.20 (m, 2H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.21 (q, *J* = 7.2 Hz, 2H), 2.54 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H), 1.09 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.06, 168.35, 165.28, 163.37, 140.37, 134.86, 129.68, 129.14, 128.69, 128.28, 120.75, 61.65, 25.33, 21.38, 14.53, 13.68; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₆H₁₈ClN₂O₂S 337.0772; Found 337.0775.

Ethyl 4-(3-chlorophenyl)-2-(ethylthio)-6-methylpyrimidine-5-carboxylate (3f).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 59 mg, yield: 87%; ¹H NMR (600 MHz, CDCl₃) δ 7.55 – 7.54 (m, 1H), 7.50 – 7.43 (m, 1H), 7.38 – 7.35 (m, 1H), 7.24 – 7.23 (m, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.21 (q, *J* = 7.2 Hz, 2H), 2.53 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H), 1.10 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.52, 167.69, 165.27, 163.35, 134.85, 130.01, 129.67, 129.12, 128.27, 126.44, 120.75, 61.64, 30.88, 21.36, 14.52, 14.41. HRMS (ESI): m/z

([M+H]⁺) Calcd for C₁₆H₁₈ClN₂O₂S 337.0772; Found 337.0775.

Ethyl 4-(2-chlorophenyl)-2-(ethylthio)-6-methylpyrimidine-5-carboxylate (3g).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 57 mg, yield: 85%; ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.42 (m, 1H), 7.38 – 7.34 (m, 1H), 7.33 – 7.30 (m, 2H), 4.05 (q, *J* = 7.2 Hz, 2H), 3.19 (q, *J* = 7.2 Hz, 2H), 2.65 (s, 3H), 1.40 (t, *J* = 7.2 Hz, 3H), 0.91 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.75, 166.73, 166.36, 163.75, 137.69, 132.12, 130.05, 129.90, 129.43, 126.56, 121.32, 61.33, 25.43, 23.50, 14.40, 13.39. HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₆H₁₈ClN₂O₂S 337.0772; Found 337.0776.

Ethyl 4-(4-bromophenyl)-2-(ethylthio)-6-methylpyrimidine-5-carboxylate (3h).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 69 mg, yield: 91%; ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.56 (m, 2H), 7.52 – 7.50 (m, 2H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.20 (q, *J* = 7.2 Hz, 2H), 2.55 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.45, 167.90, 165.73, 162.36, 136.65, 131.66, 129.90, 124.72, 120.72, 61.63, 25.37, 22.66, 14.45, 13.70; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₆H₁₈BrN₂O₂S 381.0267; Found 381.0264.

Ethyl 4-(3-bromophenyl)-2-(ethylthio)-6-methylpyrimidine-5-carboxylate (3i).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 68 mg, yield: 89%; ¹H NMR (600 MHz, CDCl₃) δ 7.78 – 7.77 (m, 1H), 7.60 – 7.58 (m, 1H), 7.55 – 7.54 (m, 1H), 7.32 – 7.29 (m, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.21 (q, *J* = 7.2 Hz, 2H), 2.56 (s, 3H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.11 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.53, 167.69, 165.83, 161.99, 139.68, 132.94, 131.30, 129.92, 126.90, 122.48, 120.89, 61.86, 25.39, 22.70, 14.42, 13.70; HRMS (ESI): m/z

 $([M+H]^+)$ Calcd for C₁₆H₁₈BrN₂O₂S 381.0267; Found 381.0265.

Ethyl 2-(ethylthio)-4-methyl-6-(3-nitrophenyl)pyrimidine-5-carboxylate (3j).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 65 mg, yield: 93%; ¹H NMR (600 MHz, CDCl₃) δ 8.52 (s, 1H), 8.34 – 8.32 (m, 1H), 7.98 – 7.96 (m, 1H), 7.65 – 7.62 (m, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 3.22 (q, *J* = 7.2 Hz, 2H), 2.59 (s, 3H), 1.43 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.96, 167.39, 166.22, 161.00, 139.31, 134.25, 129.51, 124.63, 123.47, 120.89, 62.07, 25.45, 22.85, 14.36, 13.73; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₆H₁₈N₃O₄S 348.1013; Found 348.1016.

Isopropyl 2-(ethylthio)-4-methyl-6-phenylpyrimidine-5-carboxylate (3k).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 53 mg, yield: 83%; ¹H NMR (600 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.48 – 7.39 (m, 3H), 5.09 – 5.01 (m, 1H), 3.21 (q, *J* = 7.2 Hz, 2H), 2.55 (s, 3H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.07 (s, 3H), 1.06 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.05, 167.57, 165.21, 163.44, 137.78, 129.94, 128.39, 128.36, 121.43, 69.53, 25.33, 22.52, 21.27, 14.52; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₇H₂₁N₂O₂S 317.1318; Found 317.1315.

Ethyl 4-isopropyl-2-(methylthio)-6-phenylpyrimidine-5-carboxylate (31).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 51 mg, yield: 80%; ¹H NMR (600 MHz, CDCl₃) δ 7.63 – 7.62 (m, 2H), 7.46 – 7.40 (m, 3H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.23 – 3.16 (m, 1H), 2.61 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H), 1.03 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.98, 172.52, 168.22, 163.61, 137.84, 129.90, 128.40, 128.26, 120.38, 61.67, 33.17, 21.65, 14.19, 13.59; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₇H₂₁N₂O₂S 317.1318;

Ethyl 4-methyl-2-(methylthio)-6-phenylpyrimidine-5-carboxylate (3m).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 54 mg, yield: 94%; ¹H NMR (600 MHz, CDCl₃) δ 7.67 – 7.60 (m, 2H), 7.49 – 7.40 (m, 3H), 4.15 (q, *J* = 7.2 Hz, 2H), 2.61 (s, 3H), 2.56 (s, 3H), 1.03 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.47, 168.11, 165.44, 163.57, 137.76, 130.04, 128.41, 128.40, 128.30, 120.93, 61.66, 22.60, 14.16, 13.58; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₅H₁₇N₂O₂S 289.1005; Found 289.1007.

Ethyl 4-(4-fluorophenyl)-6-methyl-2-(methylthio)pyrimidine-5-carboxylate (3n).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 56 mg, yield: 91%; ¹H NMR (600 MHz, CDDl₃) δ 7.66 – 7.61 (m, 2H), 7.14 – 7.09 (m, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 2.60 (s, 3H), 2.55 (s, 3H), 1.08 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.54, 168.04, 165.53, 162.29, 133.82, 133.79, 130.46, 130.40, 120.75, 115.51, 115.47, 61.76, 22.61, 14.15, 13.69; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.58. HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₅H₁₆FN₂O₂S 307.0911; Found 307.0914.

Ethyl 4-methyl-2-(methylthio)-6-(p-tolyl)pyrimidine-5-carboxylate (30).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 53 mg, yield: 88%; ¹H NMR (600 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.25 – 7.22 (m, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 2.60 (s, 3H), 2.54 (s, 3H), 2.40 (s, 3H), 1.09 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.30, 168.33, 165.22, 163.35, 140.41, 134.83, 129.14, 128.30, 120.75, 61.66, 22.56, 31.38, 14.14, 13.67; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₆H₁₉N₂O₂S 303.1162; Found 303.1159.

Ethyl 4-(4-fluorophenyl)-2-(isopropylthio)-6-methylpyrimidine-5-carboxylate (3p).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 55 mg, yield: 82%; ¹H NMR (600 MHz, CDCl₃) δ 7.64 – 7.62 (m, 2H), 7.13 – 7.11 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 1H), 4.03 – 3.99 (m, 1H), 2.54 (s, 3H), 1.45 (s, 3H), 1.44 (s, 3H), 1.10 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.49, 168.17, 165.55, 164.77, 162.28, 133.86, 130.41, 130.36, 115.60, 115.46, 109.99, 61.74, 35.98, 22.83, 22.63, 13.70; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₇H₂₀FN₂O₂S 335.1224; Found 335.1226.

Ethyl 2-(benzylthio)-4-methyl-6-phenylpyrimidine-5-carboxylate (3q).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 68 mg, yield: 93%; ¹H NMR (600 MHz, CDCl₃) δ 7.61 – 7.59 (m, 2H), 7.48 – 7.42 (m, 4H), 7.37 – 7.36 (m, 1H), 7.31 – 7.23 (m, 3H), 4.46 (s, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 2.57 (s, 3H), 1.03 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.60, 167.99, 165.59, 163.73, 137.66, 130.05, 129.07, 128.40, 128.38, 128.31, 127.75, 127.59, 127.12, 121.24, 61.69, 35.33, 22.59, 13.58; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₂₁H₂₁N₂O₂S 365.1318; Found 365.1315.

Ethyl 2-(benzylthio)-4-(4-fluorophenyl)-6-methylpyrimidine-5-carboxylate (3r).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 70 mg, yield: 92%; ¹H NMR (600 MHz, CDCl₃) δ 7.60 – 7.57 (m, 2H), 7.43 – 7.41 (m, 2H), 7.31 – 7.28 (m, 2H), 7.25 – 7.23 (m, 1H), 7.13 – 7.09 (m, 2H), 4.45 (s, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 2.55 (s, 3H), 1.08 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.66, 167.93, 165.67, 164.80, 163.14, 162.45, 137.56,

133.70, 130.48, 130.42, 129.02, 128.40, 127.16, 121.06, 115.60, 115.46, 61.79, 35.35, 22.60, 13.69; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₂₁H₁₉FN₂O₂S 383.1224; Found 383.1227.

Ethyl 2-(benzylthio)-4-methyl-6-(p-tolyl)pyrimidine-5-carboxylate (3s).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 67 mg, yield: 89%; ¹H NMR (600 MHz, CDCl₃) δ 7.52 – 7.51 (m, 2H), 7.44 – 7.43 (m, 2H), 7.31 – 7.28 (m, 2H), 7.25 – 7.22 (m, 3H), 4.46 (s, 2H), 4.19 (q, *J* = 7.2 Hz, 2H), 2.54 (s, 3H), 2.40 (s, 3H), 1.09 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.45, 168.23, 165.38, 163.52, 140.42, 137.73, 134.74, 129.13, 129.06, 128.38, 128.33, 127.10, 121.08, 61.69, 35.32, 22.56, 21.39, 13.68; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₂₂H₂₃N₃O₂S 379.1475; Found 379.1477.

2-(benzylthio)pyridine (3t).

Colorless oil obtained by column chromatography (PE/EA = 30:1), 35 mg, yield: 87%; ¹H NMR (600 MHz, CDCl₃) δ 8.46 – 8.45 (m, 1H), 7.48 – 7.45 (m, 1H), 7.41 – 7.40 (m, 2H), 7.30 – 7.28(m, 2H), 7.24 – 7.23 (m, 1H), 7.16 (d, *J*=7.8 Hz, 1H), 7.00 – 6.98 (m, 1H), 4.44 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.79, 149.37, 137.94, 135.93, 128.93, 128.45, 127.06, 122.07, 119.56, 34.42; HRMS (ESI): m/z ([M+H]⁺) Calcd for C₁₂H₁₂NS 202.0685; Found 202.0683.

4. ¹H and ¹³C NMR spectra

3a

3b

¹H NMR (CDCl₃, 600 MHz)

7,555 7,755 7,755 7,755 7,755 7,755 7,755 7,723	4.19 4.19 4.17	3.22 3.21 3.18	-2.54	(1.10 (1.10 (1.10 (1.08
--	----------------------	----------------------	-------	----------------------------------

Ó

140 130 120 110 100 90 80 70 60 50 40 30 20

3d

3f

004400000004440000000000000000000000000	-000	000-10	0	0-0-00
000000004444444444000000	NN	NN	5	4440
	4444	က်က်က်က	N	
	LIJ		100	

¹H NMR (CDCl₃, 600 MHz)

ò

3h

3k

31

3m

3n

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 F1 (ppm)

-109.58

30

3р

0.0

3t