Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Excitation Wavelength Reliant Light Induced Energy and Electron Processes in Pyrene and Naphthalene Functionalized Dual-Dye Integrated Polyaromatic Azaborondipyrromethenes

Boligorla Anjaiah,^a Manne Naga Rajesh,^{b,c} Lingamallu Giribabu,^{*b,c} Raghu Chitta^{*a}

^aArtificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Hanamkonda – 506004, Telangana, India.

^bPolymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Telangana, India.

^cAcademy of Scientific and Innovative Research, Ghaziabad, 201002, India.

Sl. No.	Table of Contents	Page No.
Fig. S1	¹ H NMR spectrum of (<i>E</i>)-1-(naphthalen-1-yl)-3-(pyren-1-yl)prop- 2-en-1-one (1a) in CDCl ₃ .	S4
Fig. S2	ESI-MS spectrum of (<i>E</i>)-1-(naphthalen-1-yl)-3-(pyren-1-yl)prop-2- en-1-one (1a) in methanol.	S4
Fig. S3	¹ H NMR spectrum of (E) -1-phenyl-3-(pyren-1-yl)prop-2-en-1-one (2a) in CDCl ₃ .	S5
Fig. S4	ESI-MS of (<i>E</i>)-1-phenyl-3-(pyren-1-yl)prop-2-en-1-one (2a) in methanol.	S5
Fig. S5	¹ H NMR spectrum of 1-(Naphthalen-1-yl)-4-nitro-3-(pyren-1-yl)butan-1-one (1b) in CDCl ₃ .	S6
Fig. S6	ESI-MS of 1-(Naphthalen-1-yl)-4-nitro-3-(pyren-1-yl)butan-1-one (1b) in methanol.	S 6
Fig. S7	¹ H NMR spectrum of 4-Nitro-1-phenyl-3-(pyren-1-yl)butan-1-one (2b) in CDCl ₃ .	S7
Fig. S8	ESI-MS of 4-Nitro-1-phenyl-3-(pyren-1-yl)butan-1-one (2b) in methanol.	S7
Fig. S9	¹ H NMR spectrum of (Z)-5-(naphthalen-1-yl)-N-(5-(naphthalen-1-yl)-3-(pyren-1-yl)-1H-pyrrol-2-yl)-3-(pyren-1-yl)-2H-pyrrol-2- imine (1c) in CDCl ₃ .	S 8
Fig. S10	ESI-MS spectrum of (Z)-5-(naphthalen-1-yl)-N-(5-(naphthalen-1-yl)-3-(pyren-1-yl)-1H-pyrrol-2-yl)-3-(pyren-1-yl)-2H-pyrrol-2-imin (1c) in methanol.	S 8
Fig. S11	¹ H NMR spectrum of (Z)-5-phenyl-N-(5-phenyl-3-(pyren-1-yl)- 1H-pyrrol-2-yl)-3-(pyren-1-yl)-2H-pyrrol-2-imine (2c) in CDCl ₃ .	S9
Fig. S12	ESI-MS spectrum of (Z)-5-phenyl-N-(5-phenyl-3-(pyren-1-yl)-1H- pyrrol-2-yl)-3-(pyren-1-yl)-2H-pyrrol-2-imine (2c) in methanol.	S9
Fig. S13	¹ H NMR spectrum of 4,4-Difluoro-1,7-di-(pyren-1-yl)-3,5-di(1-naphthyl)-4-bora-3a, 4a, 8-triaza-s-indacene (1) in CDCl ₃ .	S10
Fig. S14	ESI-MS of 4,4-Difluoro-1,7-di (pyren-1-yl)-3,5-di-(1-naphthyl)-4- bora-3a, 4a, 8-triaza-s-indacene (1) in methanol.	S10
Fig. S15	¹ H NMR spectrum of 4,4-Difluoro-1,7-di-(pyren-1-yl)-3,5- di(phenyl)-4-bora-3a, 4a, 8-triaza-s-indacene (2) in CDCl ₃ .	S11
Fig. S16	ESI-MS of 4,4-Difluoro-1,7-di-(pyren-1-yl)-3,5-di(phenyl)-4-bora- 3a, 4a, 8-triaza-s-indacene (2) in methanol.	S11
Fig. S17	¹¹ B NMR spectrum of 4,4-Difluoro-1,7-di (pyren-1yl)-3,5-di(1-naphthyl)-4-bora-3a, 4a, 8-triaza-s-indacene (1) in CDCl ₃ .	S12
Fig. S18	¹⁹ F spectrum of 4,4-Difluoro-1,7-di (pyren-1yl)-3,5-di(1-naphthyl)- 4-bora-3a, 4a, 8-triaza-s-indacene (1) in CDCl ₃ .	S12
Fig. S19	¹⁹ F NMR spectrum of 4,4-Difluoro-1,7-di-(pyren-1-yl)-3,5- di(phenyl)-4-bora-3a, 4a, 8-triaza-s-indacene (2) in CDCl ₃ .	S13
Fig. S20	Cyclic voltammetry of 1 , 2 , 3 , and TABPY in dichloromethane containing 0.1 M (n-C ₄ H ₉) ₄ NClO ₄ , with the concentrations of the compounds held at 1 mM; scan rate = 100 mV s^{-1} .	S14

Fig. 821	Steady-state ((a) & (b) absorption and ((c): λ_{ex} : 275 nm & (d): λ_{ex} : 335 nm) emission spectra of naphthalene (Naph) and pyrene in dichloromethane (DCM).	S15
Fig. S22	Overlay of the steady-state emission spectrum of naphthalene (Naph) and absorption spectrum of TBAPY.	S16
Fig. S23	Emission spectra of equiabsorbing solutions of 1, 2, 3 and the control compounds, naphthalene (Naph), pyrene, and 1,3, 5, 7-tetratolyl-azaborondipyrromethene (TABPY) in hexanes.	S17
Fig. S24	Emission spectra of equiabsorbing solutions of 1, 2, 3 and the control compounds, naphthalene (Naph), pyrene, and 1,3, 5, 7-tetratolyl-azaborondipyrromethene (TABPY) in hexanes, dichloromethane (DCM), and acetonitrile (ACN) displaying the scattering peaks.	S18
Fig. S25	Energy level diagram showing (a) photo-induced electron transfer in 2 and (b) photo-induced energy transfer in 3 in three solvents, hexanes, DCM, and ACN.	S19
Fig. S26	Fluorescence decay curves of (a & d) naphthalene (Naph), 1, and 3 ($\lambda_{ex} = 275 \text{ nm}$), (b & e) pyrene, 1 and 2 ($\lambda_{ex} = 335 \text{ nm}$), and (c & f) 1,3, 5, 7-tetratolyl-azaborondipyrromethene (TABPY), 1, 2, and 3 ($\lambda_{ex} = 635 \text{ nm}$) in hexanes and acetonitrile respectively.	S20

Fig. S1. ¹H NMR spectrum of (*E*)-1-(Naphthalen-1-yl)-3-(pyren-1-yl)prop-2-en-1-one (**1a**) in CDCl₃.

Fig. S2. ESI-MS spectrum of (*E*)-1-(Naphthalen-1-yl)-3-(pyren-1-yl)prop-2-en-1-one (1a) in methanol.

Fig. S3. ¹H NMR spectrum of (E)-1-Phenyl-3-(pyren-1-yl)prop-2-en-1-one (2a) in CDCl₃.

Fig. S4. ESI-MS of (E)-1-Phenyl-3-(pyren-1-yl)prop-2-en-1-one (2a) in methanol.

Fig. S5. ¹H NMR spectrum of 1-(Naphthalen-1-yl)-4-nitro-3-(pyren-1-yl)butan-1-one (1b) in CDCl₃.

Fig. S6. ESI-MS of 1-(Naphthalen-1-yl)-4-nitro-3-(pyren-1-yl)butan-1-one (1b) in methanol.

 O_2N

Fig. S7. ¹H NMR spectrum of 4-Nitro-1-phenyl-3-(pyren-1-yl)butan-1-one (2b) in CDCl₃.

Fig. S8. ESI-MS of 4-Nitro-1-phenyl-3-(pyren-1-yl)butan-1-one (2b) in methanol.

Fig. S9. ¹H NMR spectrum of (Z)-5-(Naphthalen-1-yl)-N-(5-(naphthalen-1-yl)-3-(pyren-1-yl)-1H-pyrrol-2-yl)-3-(pyren-1-yl)-2H-pyrrol-2-imine (1c) in CDCl₃.

Fig. S10. ESI-MS spectrum of (Z)-5-(Naphthalen-1-yl)-N-(5-(naphthalen-1-yl)-3-(pyren-1-yl)-1H-pyrrol-2-yl)-3-(pyren-1-yl)-2H-pyrrol-2-imin (1c) in methanol.

Fig. S11. ¹H NMR spectrum of (Z)-5-Phenyl-N-(5-phenyl-3-(pyren-1-yl)-1H-pyrrol-2-yl)-3-(pyren-1-yl)-2H-pyrrol-2-imine (**2c**) in CDCl₃.

Fig. S12. ESI-MS spectrum of (Z)-5-phenyl-N-(5-phenyl-3-(pyren-1-yl)-1H-pyrrol-2-yl)-3-(pyren-1-yl)-2H-pyrrol-2-imine (**2c**) in methanol.

Fig. S13. ¹H NMR spectrum of 4,4-Difluoro-1,7-di-(pyren-1-yl)-3,5-di(1-naphthyl)-4-bora-3a, 4a, 8-triaza-s-indacene (1) in CDCl₃.

Fig. S14. ESI-MS of 4,4-Difluoro-1,7-di (pyren-1-yl)-3,5-di-(1-naphthyl)-4-bora-3a, 4a, 8-triaza-s-indacene (1) in methanol.

Fig. S15. 4,4-Difluoro-1,7-di-(pyren-1-yl)-3,5-di(phenyl)-4-bora-3a, 4a, 8-triaza-s-indacene (2) in CDCl₃.

Fig. S16. ESI-MS of 4,4-Difluoro-1,7-di-(pyren-1-yl)-3,5-di(phenyl)-4-bora-3a, 4a, 8-triaza-s-indacene (2) in methanol.

Fig. S17. ¹¹B NMR spectrum of 4,4-Difluoro-1,7-di (pyren-1yl)-3,5-di(1-naphthyl)-4-bora-3a, 4a, 8-triaza-s-indacene (1) in CDCl₃.

Fig. S18. ¹⁹F spectrum of 4,4-Difluoro-1,7-di (pyren-1yl)-3,5-di(1-naphthyl)-4-bora-3a, 4a, 8-triaza-s-indacene (1) in CDCl₃.

-127.6 -128.0 -128.4 -128.8 -129.2 -129.6 -130.0 -130.4 -131.8 -131.2 -131.6 -132.0 -132.4 -132.8 -133.2 f1 (ppm)

Fig. S19. ¹⁹F NMR spectrum of 4,4-Difluoro-1,7-di-(pyren-1-yl)-3,5-di(phenyl)-4-bora-3a, 4a, 8-triaza-s-indacene (2) in CDCl₃.

Fig. S20. Cyclic voltammetry of 1, 2, 3, and TABPY in dichloromethane containing 0.1 M $(n-C_4H_9)_4NClO_4$, with the concentrations of the compounds held at 1 mM; scan rate = 20 mV s⁻¹.

Fig. S21. Steady-state ((a) & (b) absorption and ((c): λ_{ex} : 275 nm & (d): λ_{ex} : 335 nm) emission spectra of **Naph** and **Pyr** in dichloromethane (DCM).

Fig. S22. Overlay of the steady-state emission spectrum of Naph and absorption spectrum of TBAPY.

Fig. S23. Emission spectra of equiabsorbing solutions of 1, 2, 3 and the control compounds, Naph, Pyr, and TABPY in hexanes.

Fig. S24. Emission spectra of equiabsorbing solutions of **1**, **2**, **3** and the control compounds, naphthalene (**Naph**), pyrene, and 1,3, 5, 7-tetratolyl-azaborondipyrromethene (**TABPY**) in hexanes, dichloromethane (DCM), and acetonitrile (ACN) displaying the scattering peaks.

Fig. S25. Energy level diagram showing (a) photo-induced electron transfer in **2** and (b) photo-induced energy transfer in **3** in three solvents, hexanes, DCM, and ACN.

Fig. S26. Fluorescence decay curves of (a & d) naphthalene (Naph), 1, and 3 ($\lambda_{ex} = 275$ nm), (b & e) pyrene, 1 and 2 ($\lambda_{ex} = 335$ nm), and (c & f) 1,3, 5, 7-tetratolyl-azaborondipyrromethene (TABPY), 1, 2, and 3 ($\lambda_{ex} = 635$ nm) in hexanes and ACN respectively.