Development of Highly Efficient Bimetallic Metal Organic Frameworks for the Extraction of Pd(II) from Aqueous Solutions

Somnath Sengupta,¹ S.B. Shrikala,²Nitin Gumber,³ A. Suneesh,¹B. Sreenivasulu,^{1,4*} C. V. S. Brahmananda Rao,^{1,4}

¹ Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam– 603 102, Tamil Nadu, India.

² Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India.

- ³ Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
- ⁴ Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam
 603 102, Tamil Nadu, India.

Corresponding author:

Dr. B. Sreenivasulu, Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102, Tamil Nadu, India. Tel. +91 44 27480055 – 24287 Email: *bsrinu@igcar.gov.in*

Determination of Pd(II) concentration using UV-vis spectroscopy

The colorimetric determination of Pd(II) was done using Thorin indicator as chromogenic agent, which tends to form 1:1 violet complex with divalent palladium which shows λ_{max} around 540 nm. 1 mL of 0.05 % (w/V) thorin indicator was used for the studies. pH of the solution to be analyzed was maintained at 3.7 using sodium acetate-acetic acid buffer. A series of solutions ranging from 1 ppm to 10 ppm was prepared from a standard Pd(II) stock solution of concentration 1 g/L. The calibration was done with these standard solutions which yielded a linear calibration plot. The value of molar extinction coefficient, obtained from the slope of calibration plot was found to be 6598.04 L mol⁻¹ cm⁻¹. Similar procedure for palladium(II) determination was reported in literature.¹

PXRD

Fig. S1 PXRD of UiO-66-NH₂, UiO-66-GA and UiO-66-PDCA

Fig. S2 PXRD of UiO-66-NH $_2$ and bimetallic MOFs

BET Surface Area Analysis

Fig. S3 N_2 adsorption-desorption isotherm at 77 K for UiO-66-NH₂

Fig. S4 N_2 adsorption-desorption isotherm at 77 K for UiO-66-GA

Fig. S5 N_2 adsorption-desorption isotherm at 77 K for UiO-66-PDCA

Fig. S6 N_2 adsorption-desorption isotherm at 77 K for Zr-Zn-MOF-1

Fig. S7 N₂ adsorption-desorption isotherm at 77 K for Zr-Zn-MOF-2

Fig. S8 N₂ adsorption-desorption isotherm at 77 K for Zr-Zn-MOF-3

SEM-EDX Analysis

Fig. S9(a) EDX spectra and (b) SEM image of UiO-66-NH₂.

⁽b)

Fig. S10(a) EDX spectra and (b) SEM image of UiO-66-GA.

 $P_{T}^{T} = P_{T} = 2.00 \ kV \\ WD = 4.6 \ mm$ $P_{T} = 2.01 \ KX$ $P_{T} = 10 \ Jul \ 2023 \\ Time :10 \ Jul \ 203 \\ Ti$

Fig. S11(a) EDX spectra and (b) SEM image of UiO-66-PDCA.

Fig. S13(a) EDX spectra and (b) SEM image of Zr-Zn-MOF-2.

(b)

Fig. S14(a) EDX spectra and (b) SEM image of Zr-Zn-MOF-3.

Fig. S15 Dynamic light scattering (DLS) particle size distributions for the MOF samples dispersed in aqueous solution.

Fig. S16 Linear plots for pseudo-first order kinetics for the adsorption of palladium(II) on different MOFs (a) UiO-66-NH₂ (b) Zr-Zn-MOF-1 (c) Zr-Zn-MOF-2 (d) Zr-Zn-MOF-3

Fig. S17 Linear plots for pseudo-second order kinetics for the adsorption of palladium (II) on different MOFs (a) UiO-66-NH₂ (b) Zr-Zn-MOF-1 (c) Zr-Zn-MOF-2 (d) Zr-Zn-MOF-3

(a)

Fig. S18 Effect of palladium(II) concentration and temperature on the adsorption by (a) UiO-66-NH₂ (b) Zr-Zn-MOF-2 (c) Zr-Zn-MOF-3

Fig S19. Linear Langmuir isotherm for the adsorption of palladium(II) on different MOFs (a) UiO-66-NH₂ (b) Zr-Zn-MOF-1 (c) Zr-Zn-MOF-2 (d) Zr-Zn-MOF-3

Fig S20. Linear Freundlich isotherm for the adsorption of palladium(II) on different MOFs (a) UiO-66-NH₂ (b) Zr-Zn-MOF-1 (c) Zr-Zn-MOF-2 (d) Zr-Zn-MOF-3

(d)

Fig. S21 ln K_dversus 1/T (a) UiO-66-NH₂ (b) Zr-Zn-MOF-1 (c) Zr-Zn-MOF-2 (d) Zr-Zn-MOF-3

References:

1. S. P. Sangal and A. K. Dey, Microdetermination of palladium (II) using 1-(o-arsonophenylazo)-2-naphthol-3, 6-disulfonate (thoron) as a colorimetric reagent, *Microchemical Journal*, 1963, **7**, 257-262.