Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Finding a mononuclear cobalt(III)-peroxo complex with 1,4,7,10-

tetraazacyclododecane, an intermediate for dioxygen reduction

Yan Zhang ab, Xiao-Fang Qi a, Can-Hao Li a, Shu-Zhong Zhan*a

a Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China

b City College of Dongguan University of Technology, Dongguan 523419, China

Supplementary Materials

Table of context

1	Physical measurements
2	Determination for crystal structures of the cobalt complexes
3	Fig. S1. Powder X-ray diffraction of [Co(L)(Cl) ₂]Cl 1. As-synthesized (up);
	Simulated (down).
4	Fig. S2. ESI-MS of $[Co(L)(Cl)_2]Cl$ 1 in CH_3CN .
5	Fig. S3. (a) CV of 6.5 mM CoCl ₂ in CH ₃ CN. Conditions: 0.10 M [n -
	Bu ₄ N]ClO ₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon
	working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO ₃ reference
	electrode.
6	Fig. S4. CV of the ligand (6.5 mM) in CH ₃ CN. Conditions: 0.10 M [n-
	Bu ₄ N]ClO ₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon
	working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO ₃ reference
	electrode.

7	Fig. S5. Infrared spectra of the reaction solution of $[Co(L)(Cl)_2]Cl \ 1 \ (0.10)$
	mM) generated upon constant potential electrolysis experiment with ${}^{16}O_2$ or
	$^{18}\text{O}_2$ in acetonitrile-water under at -0.2 V.
8	Fig. S6. UV-vis absorption spectrum of complex 1 (0.02 mM) in acetonitrile
	under -0.20 V with H^+ (1.0 mM) at room temperature.
9	Fig. S7. Infrared spectrum of $[Co(L)(\mu-OH)(\mu-OO)Co(L)]Cl_3$ 2.
10	Fig. S8. Raman spectrum of $[Co(L)(\mu-OH)(\mu-OO)Co(L)]Cl_3$ 2.
11	Fig. S9. Rotating ring-disk electrode (RRDE) measurement for O ₂ reduction at
	the glassy carbon (GC) disk electrode loaded with [Co(L)(Cl) ₂]Cl 1 in an O ₂ -
	saturated 0.1 M KOH solution at various rotation rates. Conditions: work
	electrode, GC disk electrode; counter electrode, Pt ring electrode, 25 °C.
12	Fig. S10. RRDE measurement for O ₂ reduction of the ring current loaded with
	[Co(L)(Cl) ₂]Cl 1 in an O ₂ -saturated 0.1 M KOH solution at various rotation
	rates. Conditions: work electrode, GC disk electrode; counter electrode, Pt ring
	electrode, 25 °C.
	Fig. S11. RRDE measurement for O ₂ reduction at the GC disk electrode loaded
13	with [Co(L)(Cl) ₂]Cl 1 in an O ₂ -saturated with 1600 rpm at various KOH
	concentrations. Conditions: work electrode, GC disk electrode; counter
	electrode, Pt ring electrode, 25 °C.
	Fig. S12. RRDE measurement for O ₂ reduction of the ring current loaded with
14	[Co(L)(Cl) ₂]Cl 1 in an O ₂ -saturated with 1600 rpm at various KOH
	concentrations. Conditions: work electrode, GC disk electrode; counter
	electrode, Pt ring electrode, 25 °C.
15	Fig. S13. RRDE measurement for O ₂ reduction at the GC disk electrode loaded
	with [Co(L)(Cl) ₂]Cl 1 in a N ₂ -saturated and in an O ₂ -saturated 0.1 M KOH
	solution with 1600 rpm. Conditions: work electrode, GC disk electrode;
	counter electrode, Pt ring electrode, 25 °C.

16	Fig. S14. RRDE measurement for O ₂ reduction of the ring current loaded with
	[Co(L)(Cl) ₂]Cl 1 in a N ₂ -saturated and in an O ₂ -saturated 0.1 M KOH solution
	with 1600 rpm. Conditions: work electrode, GC disk electrode; counter
	electrode, Pt ring electrode, 25 °C.
17	Fig. S15. The selectivity ($^{6}H_{2}O_{2}$) as a function of the disk potential with
	varying rotation rates, in 0.1 M KOH solution.
18	Fig. S16. The selectivity ($^{6}H_{2}O_{2}$) as a function of the disk potential with
	different KOH concentrations at 1600 rpm.

Physical measurements

A Perkin-Elmer analyzer model 240 was used to do elemental analyses for C, H, and N. A Hitachi U-3010 spectrophotometer was used to measure UV-vis spectra of the samples. IR spectra were obtained as KBr pellets on a Bruker 1600 FT-IR spectrometer from 4000 to 400 cm⁻¹. Electron paramagnetic resonance (EPR) spectra of the cobalt complexes were taken on a Bruker Elexsys II E500 EPR spectrometer. Electrochemical measurements and analysis were conducted by using a CHI-660E electrochemical analyzer.

Determination for crystal structures of the cobalt complexes

Measurement and analyses for the structures of the cobalt complexes were conducted on a Bruker Smart Apex II DUO area detector employing graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). All empirical absorption corrections were conducted on the SADABS program. ¹ Direct method was used to analyze the structures of the cobalt complexes and the corresponding non-hydrogen atoms were refined with the XL refinement package. ² All calculations were carried out on a ShelXS structure solution program. ³ Non-hydrogen atoms were refined anisotropically, while hydrogen atoms on carbon atoms were generated geometrically and refined isotropically.

1 G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Götingen, Götingen, Germany, 1996.

2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.*, 2009, **42**, 339-341.

3 G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst., 2015, C17, 3-8.

Fig. S1. Powder X-ray diffraction of $[Co(L)(Cl)_2]Cl$ **1**. As-synthesized (up); Simulated (down).

Fig. S2. ESI-MS of [Co(L)(Cl)₂]Cl 1 in CH₃CN.

Fig. S3. (a) CV of 6.5 mM CoCl₂ in CH₃CN. Conditions: 0.10 M [n-Bu₄N]ClO₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO₃ reference electrode.

Fig. S4. CV of the ligand (6.5 mM) in CH₃CN. Conditions: 0.10 M [n-Bu₄N]ClO₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO₃ reference electrode.

Fig. S5. Infrared spectra of the reaction solution of $[Co(L)(Cl)_2]Cl \ 1 (0.10 \text{ mM})$ generated upon constant potential electrolysis experiment with ${}^{16}O_2$ or ${}^{18}O_2$ in acetonitrile-water under at -0.2 V.

Fig. S6. UV-vis absorption spectrum of complex 1 (0.02 mM) in acetonitrile under - 0.20 V with H⁺ (1.0 mM) at room temperature.

Fig. S7. Infrared spectrum of $[Co(L)(\mu-OH)(\mu-OO)Co(L)]Cl_3 2$.

Fig. S8. Raman spectrum of $[Co(L)(\mu-OH)(\mu-OO)Co(L)]Cl_3 2$.

Fig. S9. Rotating ring-disk electrode (RRDE) measurement for O₂ reduction at the glassy carbon (GC) disk electrode loaded with $[Co(L)(Cl)_2]Cl$ 1 in an O₂-saturated 0.1 M KOH solution at various rotation rates. Conditions: work electrode, GC disk electrode; counter electrode, Pt ring electrode, 25 °C.

Fig. S10. RRDE measurement for O₂ reduction of the ring current loaded with $[Co(L)(Cl)_2]Cl$ 1 in an O₂-saturated 0.1 M KOH solution at various rotation rates. Conditions: work electrode, GC disk electrode; counter electrode, Pt ring electrode, 25 °C.

Fig. S11. RRDE measurement for O₂ reduction at the GC disk electrode loaded with $[Co(L)(Cl)_2]Cl$ 1 in an O₂-saturated with 1600 rpm at various KOH concentrations. Conditions: work electrode, GC disk electrode; counter electrode, Pt ring electrode, 25 °C.

Fig. S12. RRDE measurement for O₂ reduction of the ring current loaded with $[Co(L)(Cl)_2]Cl$ 1 in an O₂-saturated with 1600 rpm at various KOH concentrations. Conditions: work electrode, GC disk electrode; counter electrode, Pt ring electrode, 25 °C.

Fig. S13. RRDE measurement for O₂ reduction at the GC disk electrode loaded with $[Co(L)(Cl)_2]Cl$ **1** in a N₂-saturated and in an O₂-saturated 0.1 M KOH solution with 1600 rpm. Conditions: work electrode, GC disk electrode; counter electrode, Pt ring electrode, 25 °C.

Fig. S14. RRDE measurement for O₂ reduction of the ring current loaded with $[Co(L)(Cl)_2]Cl$ **1** in a N₂-saturated and in an O₂-saturated 0.1 M KOH solution with 1600 rpm. Conditions: work electrode, GC disk electrode; counter electrode, Pt ring electrode, 25 °C.

Fig. S15. The selectivity ($^{\%}H_2O_2$) as a function of the disk potential with varying rotation rates, in 0.1 M KOH solution.

Fig. S16. The selectivity ($^{6}H_{2}O_{2}$) as a function of the disk potential with different KOH concentrations at 1600 rpm.