Supporting Information

Preparation of metal phosphide derived from dual-ligand NiFe-MOF and its boosting activity toward electrolysis of water

Qing Guo#, Lin Wu#, Jie Feng, Zhijuan Zou, Chunmei Zeng* and Kunpeng Song*

¹College of Chemistry and Chemical Engineering, China West Normal University,

Shida Road, Nanchong, 637009, China.

²Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637009, China.

* Corresponding author.

E-mail address: song19880405@126.com; melzeng@163.com #The authors contribute equally to this paper.

Fig. S1 elemental mapping image of P-FeNi

Fig. S2 LSV curves of different hydrothermal temperature (a) and different nickel-iron ratio (b) of

P-FeNi@NFF.

Fig. S3 The equivalent circuit model of EIS Nyquist diagram is fitted. R_s : solution resistance; R_{ct} : charge transfer resistance; CPE: Other resistors.

Fig. S4 CV diagrams of FeNi-MOF@NFF (a), P-FeNi@NFF (b), P-FeNi@NFF(2-MIM) (c), and P-FeNi@NFF(TPA) (d) at different sweep rates of 20-80 mV s⁻¹.

Fig. S5 SEM of P-FeNi@NFF after stability test

Fig. S6 LSV comparison of P-FeNi@NFF before and after stability test

Fig. S7 CV curves of P-FeNi@NFF as the scanning rate increases from 10 mV s⁻¹ to 80 mV s⁻¹ (Inset: linear relationship between peak oxidation current and scanning rate). (d) The relationship between TOF of P-FeNi@NFF and overpotential.

Tables

Table S1	Performance comparison of materials for OER			
Catalysts	Overpotential/mV		Z/Ω	
	at 10 mA cm ⁻²	at 100 mA cm ⁻²	$R_{\rm s}$	$R_{\rm ct}$
FeNi-MOF@NFF	202	282	3.75	6.91
P-FeNi@NFF	194	241	2.07	0.62
P-FeNi@NFF(2-MIM)	232	287	2.04	1.19
P-FeNi@NFF(TPA)	201	251	2.25	0.64

Electrolytic cell	Cell voltage/at 10 mA cm ⁻²	Ref.
P-FeNi@NFF P-FeNi@NFF	1.59 V	This work
Fe-MOF/Au-8/FF Fe-MOF/Au-8/FF	1.61 V	[1]
NiSP/NF NiSP/NF	1.70 V	[2]
NiCoP/NF NiCoP/NF	1.60 V	[3]
NiFe-MOF-74/NF NiFe-MOF-74/NF	1.58 V	[4]
Fe,Rh-Ni2P/NF Fe,Rh-Ni2P/NF	1.62 V	[5]
DLC FCP@NG DLC FCP@NG	1.63 V	[6]
CoNi2S4/Ni3S2@NF CoNi2S4/Ni3S2@NF	1.65 V	[7]

Table S2 Performance comparison of self-supported catalysts for OWS

References

- [1] Xu, Y., Xie, M., Li, X., Shao, F., Li, S., Li, S., Xu, Y., Chen, J., Zeng, F., Jiao, Y., Regulating the electronic structure of Fe-based metal organic frameworks by electrodeposition of Au nanoparticles for electrochemical overall water splitting, *Journal of Colloid and Interface Science*. 2022, 626, 426-434.
- [2] Marquez-Montes, R. A., Kawashima, K., Son, Y. J., Weeks, J. A., Sun, H. H., Celio, H., Ramos-Sanchez, V. I. H., Abcef, A. C. B. M., Mass transport-enhanced electrodeposition of Ni-S-P-O films on nickel foam for electrochemical water splitting, *Journal of Materials Chemistry A*. 2021, 9, 7736-7749.
- [3] Wang, D., Zhang, Y., Fei, T., Mao, C., Song, Y., Zhou, Y., Dong, G., NiCoP/NF 1D/2D biomimetic architecture for markedly enhanced overall water aplitting, *Chemelectrochem.* 2021, 8, 3064-3072.
- [4] Chen, C., Suo, N., Han, X., He, X., Dou, Z., Lin, Z., Cui, L., Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy, *Journal of Alloys and Compounds*. 2021, 865, 158795-158803.
- [5] Chen, M., Duan, J., Feng, J., Mei, L., Jiao, Y., Zhang, L., Wang, A., Iron, rhodium-codoped Ni₂P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting, *Journal of Colloid and Interface Science*. 2022, 605, 888-896.
- [6] Lu, Y., Chen, Y., Srinivas, K., Su, Z., Wang, X., Wang, B., Yang, D., Employing dual-ligand cocoordination compound to construct nanorod-like Bi-metallic (Fe, Co)P decorated with nitrogendoped graphene for electrocatalytic overall water splitting, *Electrochimica Acta*. 2020, 350, 136338-136348.
- [7] Dai, W., Ren, K., Zhu, Y., Pan, Y., Yu, J., Lu, T., Flower-like CoNi₂S₄/Ni₃S₂ nanosheet clusters on nickel foam as bifunctional electrocatalyst for overall water splitting, *Journal of Alloys and Compounds*. 2020, 844, 156252-156261.