Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information:

Adsorptive removal of tetracycline and methylene blue from aqueous solution with a water resistance copper-based metal organic framework

Yingzhi Zhu,^a Yan Li,^b Na Ma,^b and Wei Dai*,^a

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of

Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic

of China

^bCollege of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004,

PR China

Corresponding author.

E-mail address: daiwei@zjnu.edu.cn (W. Dai)

Chemicals: Copper nitrate trihydrate (Cu(NO₃)₂·3H₂O, 99 %) (Shanghai Aladdin Biotechnology Co., Ltd.); Tetracycline hydrochloride (98 %) (Beijing Bailingwei Technology Co., Ltd.); deionized water (generated at 25 °C, 18.25m Ω ·cm⁻¹); Benzene-1,3,5-tricarboxylic acid (H₃BTC), sodium hydroxide (NaOH), hydrochloric acid (HCl), methylene blue (MB), Ethylene glycol ((CH₂OH)₂, AR) were purchased from Sinopharm Chemical Reagent Co., Ltd.

Apparatus: SEM images are scanned by electron microscope using Hitachi S4800 equipped with EDAX energy dispersion detector (Zeiss Gemini SEM 300). D8 Advance X-ray diffractometer of Bruck AXS GMBH is used to scan the crystal phase of the material ($2\theta = 5 \sim 40^{\circ}$). The specific surface area and average pore diameter of the material are measured by Autosorb-iQ physical adsorption instrument of Kanta Instrument Co., Ltd. (The samples were degassed at 120 °C for 5h and The N₂ adsorption-desorption isotherms were recorded at -196 °C). The functional groups were analyzed by a Fourier transform infrared spectrometer (FT-IR, Thermo Nicolet NEXUS-670). And the sample absorbance was measured by Shimadzu UV-3600 spectrophotometer at 357 and 664 nm.

Scheme S1. The molecular formula of MB and TC

Scheme S2. Reaction diagrams of Cu-BTC(OMe), and Cu-BTC using a similar hydrothermal method.

Fig. S1. Thermo-gravimetric curves of Cu-BTC and Cu-BTC(OMe): (a) TGA, (b) DTA.

Fig. S2. The pictures of (A): Cu-BTC; (B): Cu-BTC(OMe5); (C): Cu-BTC(OMe10); (D): Cu-BTC(OMe15); (E): Cu-BTC(OMe20); (F): Cu-BTC(OMe30); (G): Cu-BTC(OMe40); and (H): Cu-BTC(OMe50) after soaking in water for 3, 5, and 14 days respectively.

Fig. S3. The pictures of the Cu-BTC(OMe50) samples soaked in water at (A): pH=2;(B): pH=7; (C): pH=14 and (D): T=100 °C for 30 min.

Fig. S4. Water contact angles of the (A): Cu-BTC(OMe50) and (B): Cu-BTC.

Fig. S5. Effect of solution pH on adsorption amounts of the MB and TC over Cu-

BTC(OMe50).

Fig. S6. Zeta potential of the Cu-BTC and Cu-BTC(OMe50).

Fig. S7. Regenerated performances of Cu-BTC(OMe50) toward MB and TC.

Fig. S8. XRD patterns of Cu-BTC(OMe50) repeated adsorption of MB and TC after

fifth recycle.

Fig. S9. SEM images of Cu-BTC(OMe50) repeated adsorption of MB(A) and TC(B) after fifth recycle.

Fig. S10. FT-IR curves of Cu-BTC(OMe50) repeated adsorption of MB and TC after

fifth recycle.

		Dono volumo	Average pore		
Samples	$S_{BET} (m^2 \cdot g^{-1})$	rore volume	size		
		(cm² g ')	(nm)		
Cu-BTC	970	0.37	0.57		
Cu-BTC(OMe50)	917	0.36	0.72		
Cu-OMe	68	0.08	1.90		

Table S2. Comparison of the MB and TC uptakes over some adsorbents

Adsorbates	Adsorbents	Uptake capacity (mg/g)	References	
	Cu-BTC(OMe50)	138	This work	
MB	M-Cu-BTC	0.3	[1]	
	MIL-53(Al)	4	[2]	
	HKUST-1/GO	14	[3]	
	Fe ₃ O ₄ @ZIF-8	20	[4]	
	Co/Fe-BDC	24	[5]	
	JS-AC	60	[6]	
	PEC/CS	170	[7]	
	Pine leaves	123	[8]	

Adsorbates	Adsorbents	Uptake capacity (mg/g)	References		
	Ce-UiO-66	49	[9]		
	MWCNTs	44	[10]		
	γ-Fe ₂ O ₃ @P-graphene	125	[11]		
	MMDM	7	[12]		
	Cu-BTC(OMe50)	42	This work		
	UiO-66(NH ₂)	59	[13]		
	NiCoFe-MOF-74	103	[14]		
	In ₂ S ₃ /UiO-66	106	[15]		
	MnUiO-66	72	[16]		
	MSCG	32	[17]		
TC	MGO	106	[18]		
	Graphene oxide/Calcium alginate	132	[19]		
	IMt-2	32	[20]		
	HM	4.6	[21]		
	HM-Fe	5.3	[21]		
	MARG	24.2	[22]		

References:

- [1] A. R. Abbasi, M. Karimi, K. Daasbjerg, Ultrason. Sonochem., 2017, 37, 182-191.
- [2] C. Li, Z. H. Xiong, J. M. Zhang, C. Wu, J. Chem. Eng. Data, 2015, 60, 3414-3422.
- [3] L. Li, X. L. Liu, H. Y. Geng, B. Hu, G.W. Song, Z.S. Xu, J. Mater. Chem. A., 2013, 1, 10292.
- [4] J. Zheng, C. Cheng, W.J. Fang, C. Chen, R.W. Yan, H.X. Huai, C.C. Wang, Cryst.
- Eng. Comm., 2014, 16, 3960-3964.
- [5] S. Soni, P. K. Bajpai, J. Mittal, J. Mol. Liq., 2020, 314, 113642.
- [6] R. Dod, G. Banerjee, D. R. Saini, Clean Technol. Envir., 2015, 17:,2349-2359.
- [7] O. A. Attallah, W. Mamdouh, Int. J. Environ. Sci. Te., 2021, 18, 131-140.

- [8] M. T. Yagub, T. K. Sen, H. M. Ang, Water Air Soil Poll., 2012, 223, 5267-5282.
- [9] M. R. Richelle, S. Ganesan, V. A. Kanalli, J. Hazard. Mat., 2021, 416, 125941.
- [10] D. L. Zhao, Y. Ding, S. H. Chen, Asian J. Chem., 2013, 25, 5756-5758.
- [11] L. Y. Zhang, W. L. Zhang, Z. Q. Zhou, J. Colloid Interf. Sci., 2016, 476, 200-205.
- [12] H. John, G. Heba, M. Nour, Sci. Total Environ., 2020, 714, 136832-136842.
- [13] Y. Pan, X. Z. Yuan, L. B. Jiang, Chem. Eng. J., 2020, 384, 123310-123325.
- [14] R. Xiao, H. I. Abdu, L. Wei, Analyst, 2020, 145, 2398-2404.
- [15] W. B. Dong, D. B. Wang, H. Wang, J. Colloid Interf. Sci., 2019, 535, 444-457.
- [16] Z. H. Yang, J. Cao, Y. P. Chen, Micropor. Mesopor. Mat., 2019, 277, 277-285.
- [17] B. Y. Huang, Y. G. Liu, B. Li, Carbohyd. Polym., 2017, 157, 576-585.
- [18] J. H. Miao, F. H. Wang, Y. J. Chen, Appl. Surf. Sci., 2019, 475, 549-558.
- [19] H. T. Zhu, T. Chen, J. Q. Liu, RSC Adv., 2018, 8, 2616-2621.
- [20] P. H. Chang, Z. H. Li, J. S. Jean, W. T. Jiang, C. J. Wang, K. H. Lin, Appl. Clay Sci., 2012, 67, 158-163.
- [21] H. B. Hou, G. L. Xu, F. He, H. Pan, Int. J. Environ. Res. 2023, 20, 2901.
- [22] D. Huang, J. Wu, L. Wang, X. Liu, J. Meng, X. Tang, Chem. Eng. J., 2019, 358, 1399-1409.

]	Langmuir mod	el		Freundlich model			
Samples	$C_e/q_e = ($	$(1/q_{max})*C_{e}+1/($	$(K_L * q_{max})$	1	$\ln q_e = \ln K_f + (1/n) \cdot \ln C_e$			
	q_L	KL	R^2	$K_{ m f}$	п	R ²		
	(mg/g)	(L/mg)	Λ	(L/g)		11		
Cu-BTC	20.04	0.0757	0.9498	3.2677	2.4931	0.6764		
Cu-BTC(OMe50)	188.68	0.0941	0.9551	21.3681	1.7050	0.9005		
Cu-OMe	61.35	0.0540	0.9249	6.9448	2.0691	0.7440		

Table S3. Summary of fitting parameters of the adsorption isotherm model of MB by Cu-BTC and others.

		Langmuir mo	odel	Fre	Freundlich model			
Samples	$C_e/q_e = 0$	$(1/q_{max})*C_e+1$	$/(K_L * q_{max})$	$\ln q_e$ =	$\ln q_e = \ln K_f + (1/n) \cdot \ln C_e$			
	q_m	KL	R ²	$K_{ m f}$	и	R^2		
	(mg/g)	(L/mg)	Λ	(L/g)	п	π		
Cu-BTC	32.26	0.0388	0.9472	2.9571	1.9999	0.8557		
Cu-BTC(OMe50)	81.97	0.0172	0.9188	2.8095	1.4999	0.9263		
Cu-OMe	81.97	0.0089	0.9101	1.2002	1.2933	0.9870		

Table S4. Summary of fitting parameters of the adsorption isotherm model of TC by Cu-BTC and others.

			Pseudo-second-order kinetic model									
	$\ln(q_e - q_t) = \ln(q_{e \ cal}) - k_l t$							$t/q_t = 1/(K_2 * q_e^2) + t/q_e$				
	Samples	$q_{e,exp}$	$q_{e,cal}$	K_{I}	\mathbf{R}^2	riangle q	riangle q	$q_{e,cal}$	K_2	\mathbf{R}^2	$_{2}$ $\bigtriangleup q$	riangle q
		(mg/g)	(mg/g)	(1/min)	Λ	(mg/g)	(%)	(mg/g)	(g/mg·min)	Λ	(mg/g)	(%)
	Cu-BTC	13.32	7.95	0.0104	0.9318	5.37	40.32	14.56	0.0019	0.9984	1.24	9.31
	Cu-BTC(OMe50)	139.33	226.56	0.0123	0.9282	87.23	62.61	217.39	0.0000	0.9914	78.06	56.03
	Cu-OMe	49.60	74.20	0.0124	0.9245	24.60	49.60	70.42	0.0000	0.9927	20.82	41.98

Table S5. Kinetics parameters on the adsorption of MB in solution by Cu-BTC and others.

- Samples -	Pseudo-first-order kinetic model							Pseudo-second-order kinetic model				
	$\ln(q_e - q_t) = \ln(q_{e \ cal}) - k_l t$							$t/q_t = 1/(K_2 * q_e^2) + t/q_e$				
	$q_{e,exp}$	$q_{e,cal}$	K_{l}	D 2	riangle q	riangle q	$q_{e,cal}$	K_2	<i>R</i> ²	riangle q	riangle q	
	(mg/g)	(mg/g)	(1/min)	Λ^{-}	(mg/g)	(%)	(mg/g)	(g/mg·min)		(mg/g)	(%)	
Cu-BTC	25.81	19.00	0.0290	0.9539	6.81	26.39	29.59	0.0016	0.9944	3.78	14.64	
Cu-BTC(OMe50)	44.25	17.26	0.0198	0.9786	26.99	60.99	45.25	0.0031	0.9984	1.00	2.26	
Cu-OMe	35.73	31.56	0.0374	0.9532	4.17	11.67	40.49	0.0014	0.9973	4.76	13.32	

Table S6. Kinetics parameters on the adsorption of TC in solution by Cu-BTC and others.