Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Cholesterol appended cyanostyryl thiophene positional isomers with multistimuli responsive emission switching and liquid crystalline properties

Nelliyulla Kappumchalil Ramya, a Parappurath Athira, a Manoj Mathews b, Doddamane S. Shankar Rao, and Reji Thomas*a

^a Department of Chemistry, Farook College (Autonomous), Kozhikode, Kerala- 67363, India

^b Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Kozhikode - 673008, Kerala, India

^c Centre for Nano and Soft Matter Sciences (CeNS), Bangalore, Karnataka, India

Section 1: Synthesis and Characterization

Section 2: Figures and Tables

Figure S1: ¹ H NMR Spectra of cholesterol appended 2-(4-aminophenyl) acetonitrile, 1	S8
Figure S2: ¹³ C NMR spectra of cholesterol appended 2-(4-aminophenyl) acetonitrile, 1	S9
Figure S3: ¹ H NMR spectra of CS-1	S 10
Figure S4: ¹³ C NMR spectra of CS-1	.S11
Figure S5: ¹ H NMR spectra of CS-2	S12
Figure S6: ¹³ C NMR spectra of CS-2	S13

Figure S7: UV-Visible spectra of CS-1 and CS-2	S14
Figure S8: Emission spectra of CS-2 recorded in THF/water mixtures	.S15
Figure S9: Fluorescent intensity in response to the changes of water fractions in THF-H2O mixtures for CS-1 and CS-2	S16
Figure S10: ORTEP plot of asymmetric unit present in the single crystals structure of CS-1	.S17
Table S1: Crystallographic and structure refinement details of CS-1	S18
Figure S11: Differential Scanning Calorimetric (DSC) thermograms of compounds CS-1 and CS-2	.S19
Figure S12: Polarizing optical photomicrograph of CS-1	.S20
Figure. S13: X-ray diffraction pattern of CS-1 (a) and CS-2 (b) at different temperatures in the N*phase	<mark>S</mark> 21

Section 3: References

eferences

Synthesis and characterization

Materials. Solvents and chemicals for the synthesis and photophysical studies were purchased from Sigma Aldrich, Alfa Aeser and TCI and used without further purification.

Characterization. The ¹H NMR and ¹³C NMR spectra were obtained from a Bruker Avance 400 MHz spectrometer operating at room temperature. Photoluminescence spectra and lifetime experiments were performed using Fluorolog-3 with TCSPC spectroflurometer (model FL 3C-221). The mass spectra of the compounds were recorded on a Waters Xevo G2 XS QToF mass spectrometer. The single crystal X-ray diffraction data of CS-1 was collected on Bruker D8 Venture diffractometer attached with PHOTON II detector with CMOS-sensor. The data collection was conducted at room temperature using Mo Ka radiation operated at 50 kV and 40 mA. The powder X-ray diffraction data was collected using PANalytical X'Pert3 Powder X-Ray Diffractometer. X-ray diffraction (XRD) measurements were carried out on powder samples in Lindemann capillaries with CuK α ($\lambda = 0.15418$ nm) radiation using either an Image plate (IP) detector (GeniX3D, Xenocs) from a source operating at 50 kV and 0.6 mA in conjunction with a multilayer mirror was used to illuminate the sample or PANalytical X'Pert PRO MP machine consisting of a focusing elliptical mirror and a fast high-resolution detector (PIXCEL).

Scheme S1: Synthetic route to CS-1 and CS-2

Synthesis of 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-10,13-dimethyl-17-(6-methylheptan-2-yl)-1Hcyclopenta[a]phenanthren-3-yl 4- (cyanomethyl)phe nylcarbamate, 1

The compound **1** was synthesized following the reported procedure.¹ 2-(4-aminophenyl) acetonitrile (5 mmol) is dissolved in minimum quantity of dichloromethane and cooled to 0 $^{\circ}$ C in an ice bath. The cholesterol chloroformate (4.8 mmol) was added to the reaction mixture followed 0.5 ml pyridine and stirring was continued for 6 hours. The reaction mixture was quenched with water and extracted with dichloromethane. Combined organic layers were washed with brine, and dried over Na₂SO₄. Solvent was evaporated and the residue was purified by column chromatography on silica gel using hexane ethyl acetate (4/1) as eluent to afford compound **1** as a colourless crystalline solid on re-crystallization form ethyl acetate. The product was characterized using ¹H NMR and ¹³C NMR spectroscopy.

Yield: 87 %, ¹H NMR (400 MHz, CDCl3) δ (ppm): 0.67 (s, 3H), 0.87 (m, 6H), 0.91 (t, *J* = 6 Hz, 3H), 0.98 (m, 6H), 1.13 (m, 7H), 1.29 (m, 4H), 1.47 (m, 5H), 1.62 (m, 1H), 1.91 (m, 5H), 2.38 (m, 2H), 3.69 (s, 2H), 4.59 (m, 1H), 5.40 (m, 1H), 6.57 (s, 1H), 7.24 (d, *J* = 8 Hz, 3H), 7.38 (d, *J* = 12 Hz, 2H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 11.87, 18.71, 19.34, 21.04, 22.57, 22.83, 23.02, 23.83, 24.29, 28.02, 28.07, 28.24, 31.86. 35.80, 36.18, 36.57, 39.51, 39.72, 42.31, 49.99, 56.12, 56.68, 75.18, 117.94, 119.00, 122.87, 124.38, 128.64, 137.99, 139.49, 152.90.

General method for the synthesis of compounds CS-1 and CS-2

The compounds **CS-1** and **CS-2** were synthesized by adopting reported procedures with suitable modifications.² Compound **1** (545 mg, 1 mmol) and thiophene-2-carbaldehyde or thiophene-3-carbaldehyde (1 mmol) were dissolved in a mixture of ^tBuOH (11 ml) and THF (5

ml) at 50° C. ¹BuOK (0.11 ml of a 1 M solution in THF, 0.11 mmol) and n-Bu₄NOH (1 ml of a 1 M solution in MeOH, 1 mmol) were added. An orange precipitate started to form immediately and was stirred for 15 minutes at 70° C. The reaction mixture was cooled to room temperature and poured into acidified methanol (50 ml containing 1 drop of conc.CH₃COOH). The resulting precipitate was filtered and washed with methanol. The compounds were further re-precipitated 5 times from dichloromethane solutions by adding excess methanol

Compound CS-1: Yield: 87 %, M.P. 188 °C, ¹H NMR (400 MHz, CDCl3) δ (ppm): 0.69 (s, 3H), 0.86 (d, 3H, J=1.84 Hz), 0.88 (d, 3H, J=1.84 Hz), 0.92 (d, 3H, J=6.52 Hz), 0.99 (m, 3H), 1.04 (s, 4H), 1.13 (m, 7H), 1.24 (m, 2H), 1.35 (m, 3 H), 1.49 (m, 5H), 1.66 (m, 1H), 1.86 (m, 2H), 1.99 (m, 3H), 2.42 (m, 2H), 4.62 (m, 1H), 5.42 (m, 1H), 6.66 (s, 1H), 7.41 (m, 1H), 7.47 (d, 2H, J=1.96Hz), 7.59 (m, 2H), 7.76 (dd, 1H, J=5.16Hz and 1.32 Hz), 7.92 (m, 1H).

¹³C NMR (400 MHz, CDCl3) δ (ppm) 11.87, 18.72, 19.34, 21.05, 22.57, 22.83, 23.84, 24.29, 28.02, 28.23, 31.87, 31.91, 35.80, 36.18, 36.58, 36.95, 38.42, 39.52, 39.72, 42.32, 50.00, 56.13, 56.68, 75.31, 109.36, 118.45, 118.67, 122.92, 126.54. 126.63, 127.33, 128.95, 129.02, 134.05, 136.11, 138.87, 139.47, 152.69. HRMS (ESI) m/z calculated 638.3906; Found: 639.4040 [M+H]⁺.

Compound CS-2: Yield: 83 %, M.P. 179 °C, ¹H NMR (400 MHz, CDCl3) δ (ppm) : 0.69 (s, 3H), 0.88 (m, 6H), 0.93 (t, 3H, J=6Hz), 1.01 (m, 6H), 1.12 (m, 7H), 1.30 (m, 5H), 1.48 (m, 5H), 1.63 (m, 2H), 1.92 (m, 5H), 2.41 (m, 2H), 4.62 (m, 1H), 5.41 (d, 1H, J= 4Hz), 6.68 (d, 1H, J= 4Hz), 7.15 (m, 1H) 7.45 (m, 1H), 7.47 (m, 1H), 7.53 (t, 1H, J= 4Hz), 7.58 (t, 2H, J= 8Hz), 7.65 (t, 1H, J= 4Hz).

¹³C NMR (400 MHz, CDCl3) δ (ppm) 11.87, 18.72, 19.34, 21.05, 22.57, 22.83, 23.84, 24.29, 28.02, 28.24, 31.87, 31.91, 35.80, 36.18, 36.58, 36.95, 38.42, 39.52, 39.72, 42.32, 50.00, 56.13, 56.68, 75.31, 107.79, 118.17, 118.70, 122.93, 126.49, 127.83, 128.65, 129.68, 132.00, 132.87, 138.08, 138.91, 139.47, 152.78. HRMS (ESI) m/z calculated 638.3906; Found: 639.3990 [M+H]⁺.

Fig. S1 ¹H NMR spectra of 1in CDCl₃

Fig. S2 ¹³C NMR spectra of 1in CDCl₃

Fig. S3 ¹H NMR spectra of CS-1 in CDCl₃

Fig S4¹³C NMR spectra of CS-1 in CDCl₃

Fig. S5 ¹H NMR spectra of CS-2 in CDCl₃

Fig. S6 ¹³C NMR spectra of CS-2 in CDCl₃

Fig. S7 UV-visible absorption spectra of CS-1 (blue curve) and CS-2 (red curve) in THF (1 µM)

Fig. S8 Emission spectra of CS-2 recorded in THF/water mixtures (50 μ M) by varying the water fraction. ($\lambda_{ex} = 370$ nm)

Fig. S9 Fluorescent intensity in response to the changes of water fractions in THF-H₂O mixtures (a) CS-1 and (b)CS-2 Concentration:

50x10⁻⁶ M; λex: 370nm.

Fig. S10 ORTEP plot of the asymmetric unit present in the single crystals structure of **CS-1** (ellipsoids are drawn at 50 % probability, and hydrogen atoms are removed for clarity)

Identification code	CS-1		
Empirical formula	$C_{41} H_{54} N_2 O_2 S$		
Formula weight	638.92		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 18.357(11) Å	$\alpha = 90^{\circ}$.	
	b = 12.475(7) Å	β = 115.78(2) °.	
	c = 18.564(13) Å	$\gamma = 90^{\circ}$.	
Volume	3828(4) Å ³		
Z	4		
Density (calculated)	1.109 mg/m ³		
Absorption coefficient	0.119 mm ⁻¹		
F(000)	1384		
Crystal size	0.396 x 0.189 x 0.114 mm ³		
Theta range for data collection	2.464 to 25.496°.		
Index ranges	-22<=h<=22, -15<=k<=15, -22<=l<=22		
Reflections collected	108710		
Independent reflections	14206 [R(int) = 0.0836]		
Completeness to theta = 25.242°	99.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7455 and 0.6707		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	14206 / 511 / 934		
Goodness-of-fit on F ²	1.107		
Final R indices [I>2sigma(I)]	R1 = 0.0703, $wR2 = 0.1309$		
R indices (all data)	R1 = 0.1327, wR2 = 0.1616		
Absolute structure parameter	0.03(4)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.354 and -0.201 e Å ⁻³		
CCDC No	2293176		

Table S1. Crystallographic and structure refinement details of CS-1.

Fig. S11 DSC traces of first heating and cooling and second heating and cooling cycles of (a) **CS-1** and (b) **CS-2** recorded at a scan rate of 5 °C/minutes.

Fig. S12 Polarizing optical photomicrograph of **CS-1** showing (a) characteristic oily streak texture of the N* phase at 188 °C and (b) glassy N* phase obtained at room temperature.

Fig. S13 Small angle X-ray diffraction pattern of (a) CS-1 and (b) CS-2 at different temperatures.

References

- 1 L. Wen, J. Sun, C. Li, C. Zhu, X. Zhang, Z. Wang, Q. Song, C. Lv and Y. Zhang, New J. Chem., 2021, 45, 11530-11535.
- 2 M. Kinami, B.R. Crenshaw, and C. Weder, *Chem. Mater.*, 2006, **18**, 4, 946–955.