Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information for:

Benz[e]indenyl and benz[f]indenyl molybdenum compounds: Evidence of η^{3} -

coordination mode.

Jiří Štěpán,^a Jaromír Vinklárek,^a Ivana Císařová,^b Libor Dostál ^a and Jan Honzíček ^{*c}

^a Department of General and Inorganic Chemistry, Faculty of Chemical Technology,

University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.

^b Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2, Czech Republic.

^c Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.

Materials. The reagents were purchased from Acros Organics. Benz[f] indanone was prepared according to literature procedure.¹

Synthesis of benz[e]indanone. A suspension of AlCl₃ (22 g; 165 mmol) in carbon disulfide (100 mL) was cooled on 0 °C and treated with mixture of naphthalene (15 g; 117 mmol) and 3-chloropropionyl chloride in carbon disulfide (40 mL) dropwise. The reaction mixture was stirred for 15 min at 0°C and then for 4 h at room temperature. The reaction mixture was poured into the mixture of ice and hydrochloric acid and the product was extracted with CH_2Cl_2 (3 × 100 mL). The volatiles were vacuum evaporated, and the solid product was treated with sulfuric acid (100 mL; 98%) and heated on 90 °C for 40 min. The reaction mixture was poured into water/ice mixture and extracted with CH_2CI_2 (3 × 100 mL). The combined organic phases were washed with brine, dried with magnesium sulfate. Volatiles were vacuum evaporated to give mixture of benz[e]indan-1-one and benz[e]indan-3-one in molar ratio 1:1.9 (determined by NMR spectroscopy). Yield: 9.3 g (51 mmol; 43.6%). Pale yellow powder. Pure isomers were isolated by column chromatography (Silica; CH_2Cl_2 /hexane – 7:3). Benz[e]indan-1-one: Colorless crystals ($R_f = 0.39$). Benz[e]indan-3-one: Colorless crystals ($R_f = 0.19$). Analytical and spectroscopic data of pure isomers are in line with those published elsewhere.^{2,3}

Synthesis of benz[e]indanol. Suspension of LiAlH₄ (0.52 g; 13.7 mmol) in THF (100 mL) was cooled on 0 °C, treated with solution of crude benz[e]indanone (2.5 g; 13.7 mmol; mixture of isomers) in THF (35 mL) and stirred for 90 min at room temperature. The mixture was cooled on 0 °C and the reaction was quenched with water (1 mL added dropwise). *Caution: Hydrogen gas is produced vigorously.* The mixture was diluted with water and extracted with Et₂O (3 × 100 mL). Volatiles were vacuum evaporated and vacuum dried to give pure mixture of benz[e]indan-1-ol and benz[e]indan-3-ol. Yield: 2.14 g (11.6 mmol; 84.9%). Pale yellow powder. Analytical and spectroscopic data are in line with those published elsewhere.⁴

Synthesis of benz[e]indene (1). Benz[e]indanol (2.14 g, 11.6 mmol) was dissolved in toluene (75 mL), treated with *p*-toluenesulfonic acid (10 mg) and under reflux for 18 h. The formed water was distilled off using Dean-Stark apparatus. The solution was cooled at room temperature, washed with water (3 × 100 mL) and dried with anhydrous magnesium sulfate. Volatiles were vacuum evaporated. The crude product was dissolved in CH₂Cl₂ (100 mL) and filtered through short pad of silica. The pure mixture of 1*H*-benz[e]indene and 3*H*-benz[e]indene was obtained after vacuum evaporation of the solvent. Yield: 1.69 g (10.2 mmol; 87.7%). Pale yellow powder. Analytical and spectroscopic data are in line with those published elsewhere.⁴

Deuterium labeled benz[e]indene (1-[D]). A solution of benz[e]indene (**1**; 0.18 g, 1.08 mmol) was cooled to 0 °C, treated dropwise with a solution of *n*-BuLi in hexane (1.6 M, 1.5 mL, 2.4 mmol), and stirred for 30 min at this temperature. The mixture was cooled to -80 °C, treated dropwise with D₂O (2 mL), warmed up to room temperature, slowly poured into distilled water (50 mL) and extracted with CH₂Cl₂ (4 × 50 mL). The combined organic layer was dried with magnesium sulfate. The volatiles were vacuum evaporated. The procedure was repeated three times to give light pink product. Yield: 0.17 g (1.01 mmol; 93.1%). Analytical and spectroscopic data are in line with those published elsewhere.⁴

Synthesis of benz[f]indene (2).

The reaction was performed as described for compound **1** but with benz[f] indanone (5.00 g; 27.4 mmol). Yield: 2.68 g (16.1 mmol, 58.8 %). Analytical and spectroscopic data are in line with those published elsewhere.⁵

References

- 1 C. L. Becker and M. L. McLaughlin, Synlett, 1991, 642.
- 2 Y. N. Duan, L. Q. Cui, L. H. Zuo and C. Zhang, Chem. Eur. J., 2015, 21, 13052–13057.
- 3 M. Thangaraj, S. S. Bhojgude, R. H. Bisht, R. G. Gonnade and A. T. Biju, J. Org. Chem., 2014, **79**, 4757–4762.
- 4 E. Marechal and G. Chaintron, Bull. Soc. Chim. France, 1967, 987–992.
- 5 K. Hermann, Y. Pratumyot, S. Polen, A. M. Hardin, E. Dalkilic, A. Dastan and J. D. Badjić, *Chem. Eur. J.*, 2015, **21**, 3550–3555.