Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting material for "Functionalized graphene nanoplatelets: a promising adsorbent for solid-phase uranium extraction"

Aline Dressler, Antoine Leydier,* and Agnès Grandjean CEA, DES, ISEC, DMRC, , Univ. Montpellier, Marcoule, France

* Corresponding author: A. Leydier

E-mail address: antoine.leydier@cea.fr

Phone: +33 4 66 33 94 74

Solution ¹H, ³¹P and ¹³C NMR spectra were recorded on a Bruker 400 ultrashield VS spectrometer (Larmor frequencies, 400.13 MHz for ¹H, 161.976 MHz for ³¹P, 100.613 MHz for ¹³C) using deuterated chloroform as the solvent and internal standard.

Fig. S1. Structural formula of Di-2-EthylHexylCarbamoyleEthylButyl Phosphonate (DEHCEBP).

Analyses were performed on a Bruker Micro Q tof Mass spectrometer

Fig. S2. + mode mass spectrum calculated for $C_{23}H_{49}NO_4P^+ = 434.3394$; found= 434,3392.

Fig. S3. - mode mass spectrum calculated for $C_{23}H_{47}NO_4P$ = 432.3248; found= 432,3246.

Fig. S4. ³¹P NMR spectrum (CDCl₃, 162 MHz) of Di-2-EthylHexylCarbamoyleEthylButyl Phosphonate (DEHCEBP). δ (ppm), 26.7.

Fig. S5. ¹H NMR spectrum (CDCl₃, 400 MHz, 25°C) of Di-2-EthylHexylCarbamoyleEthylButyl Phosphonate (DEHCEBP). δ (ppm): 9.04 (broad s, 1H, PO*H*); 4.06-3.97 (m, 2H, P-O-C*H*₂-CH₂-); 3.62 – 3.30 (m, 2H, CH-C*H*₂-N); 3.29-3.20 (m, 1H, CO-C*H*(CH₃)-P), 3.09-2.86 (m, 2H, CH-C*H*₂-N); 1.64

-1.55 (m, 2H, CH-CH₂-N), 1.44 – 1.16 (m, 21H, CH2, & CO-CH(CH₃)-P) ; 0.91 – 0.78 (m, 15H, CH₂-CH₃).

Fig. S6. ¹³C NMR spectrum (CDCl3, 100 MHz, 25°C) of Di-2-EthylHexylCarbamoyleEthylButyl
Phosphonate (DEHCEBP). δ (ppm): 170.8 (C=O), 65.5 (P-O-CH₂), 52.3; 51.78, 50.2, 49.4 (CH-CH₂-N), 38.8 (CH-CH₂-N), 36.9 (P-C-CH₃), 35.1 (d, J_{C-P}=135Hz, P-C-CH₃); 32.4 (CH₂), 30.3 (CH₂), 28.6 (CH₂), 23.8 (CH₂), 22.9 (CH₂) 18.6 (CH₂), 13.9 (CH₃), 13.5 (CH₃), 12.7 (CH₃), 10.7 (CH₃), 10.3 (CH₂)

(CH₃).

Fig. S7. Differential thermogravimetric curve the DEHCEBP ligand.

Fig. S8. Phosphorous concentration in solution released by impregnated GNPs-based materials with DEHCEBP concentrations of 0.5–1.2 mmol·g⁻¹. Accurate values could not be determined for the material with DEHCEBP concentration of 0.3 mmol·g⁻¹ because the low phosphorus concentration values were smaller than the associated measurement errors.

Fig. S9 Thermogravimetric curve for DEHCEPB + GNP ligands.