Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Aroyl-isothiocyanate/isoselenocyanate as precursors to afford novel *cis-3*aroyl-thiourea/urea-b-lactams: Design, synthesis, docking and biological evaluation

Pankaj Kumar^{a,†}, Jaswinder Kaur^{a,†}, Sumeeta Kumari^b, Sakshi Paliwal^b, Shiwani Berry^c, Anil Kumar Pinnaka^{b,**}, Aman Bhalla^{a,*}

^a Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India

^b Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India ^c Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Shahpur Campus, Shahpur, Kangra-176206, HP, India

[†] These authors contributed equally.

* Corresponding author.

** Corresponding author.

Email addresses: amanbhalla@pu.ac.in, (A. Bhalla), apinnaka@imtech.res.in, (A. K. Pinnaka)

Entry	Title	Page No.
1.	¹ H, ¹³ C-NMR and HRMS spectra of 5a-(Figure S1, S2)	3-4
2.	¹ H, ¹³ C-NMR and HRMS spectra of 5b-(Figure S3, S4)	5-6
3.	¹ H, ¹³ C-NMR and HRMS spectra of 5c-(Figure S5, S6)	7-8
4.	¹ H and ¹ C-NMR of 5d-(Figure S7)	9
5.	¹ H, ¹³ C-NMR and HRMS spectra of 5e-(Figure S8, S9)	10-11
6.	¹ H and ¹³ C-NMR spectra of 5f-(Figure S10)	12
7.	¹ H, ¹³ C-NMR and HRMS spectra of 8a-(Figure S11, S12)	13-14
8.	¹ H, ¹³ C-NMR and HRMS spectra of 8b-(Figure 13, S14)	15-16
9.	¹ H, ¹³ C-NMR and HRMS spectra of 8c-(Figure S15, S16)	17-18
10.	¹ H, ¹³ C-NMR and HRMS spectra of 8d-(Figure S17, S18)	19-20
11.	¹ H, ¹³ C-NMR and HRMS spectra of 8e-(Figure S19, S20)	21-22
12.	¹ H, ¹³ C-NMR and HRMS spectra of 8f-(Figure S21, S22)	23-24
13.	¹ H and ¹³ C-NMR spectra of 10a-(Figure S23)	25
14.	¹ H and ¹³ C-NMR spectra of 10b-(Figure S24)	26
15.	¹ H and ¹³ C-NMR spectra of 10c-(Figure S25)	27
16.	¹ H and ¹³ C-NMR spectra of 11a-(Figure S26)	28
17.	¹ H and ¹³ C-NMR spectra of 11b-(Figure S27)	29
18.	¹ H and ¹³ C-NMR spectra of 11c-(Figure S28)	30
19.	ADME parameters of <i>cis</i> -3-aroyl-thiourea/urea-β-lactams 5a-f/8a-f (Figure S29)	31
20.	IC50 graphs of 5b , 5e , 8d and 8e against <i>S. aureus</i> (Figure S30-S33)	32-33
21.	IC50 graphs of 5b , 5e , 8c , 8d and 8e against <i>B</i> . <i>cereus</i> (Figure S34-S38)	34-35
22.	IC50 graphs of 5a , 5b , 5e , 8d and 8e against <i>P. aeruginosa</i> (Figure S39-S43)	36-37
23.	IC50 graphs of 5b , 8d and 8e against <i>E. coli</i> (Figure S44-S46)	38
24.	IC50 graphs of 5d , 5f , 8a , 8b , 8c , 8d , 8e and 8f against <i>C. albicans</i> (Figure S47-S54)	39-41
25.	IC50 graphs of 5d , 5f , 8a , 8b , 8c , 8d , 8e and 8f against <i>C. tropicalis</i> (Figure S55-S62)	42-44

1. ¹H, ¹³C-NMR and HRMS spectra of 3-aroylthiourea- β -lactams 5a-f

Figure S1: ¹H and ¹³C-NMR spectra of 1-Benzoyl-3-[1-(4-methoxy-phenyl)-2-oxo-4-phenyl-azetidin-3-yl]-thiourea **5a** in DMSO

Figure S2: HRMS spectra of 1-Benzoyl-3-[1-(4-methoxy-phenyl)-2-oxo-4-phenyl-azetidin-3-yl]-thiourea **5a**

Figure S3: ¹H and ¹³C-NMR spectra of 1-Benzoyl-3-[1,2-bis-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-thiourea **5b** in DMSO

Figure S4: HRMS spectra of 1-Benzoyl-3-[1,2-bis-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]thiourea 5b

Figure S5: ¹H and ¹³C-NMR spectra of 1-Benzoyl-3-[2-(4-chloro-phenyl)-1-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-thiourea **5c** in DMSO

Figure S6: HRMS spectra of 1-Benzoyl-3-[2-(4-chloro-phenyl)-1-(4-methoxy-phenyl)-4-oxoazetidin-3-yl]-thiourea **5c**

Figure S7: ¹H and ¹³C-NMR spectra of 1-(4-Methoxy-benzoyl)-3-[1-(4-methoxy-phenyl)-2oxo-4-phenyl-azetidin-3-yl]-thiourea **5d** in DMSO

Figure S8: ¹H and ¹³C-NMR spectra of 1-[1,2-Bis-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-3-(4-methoxy-benzoyl)-thiourea **5e** in DMSO

Figure S9: HRMS spectra of 1-[1,2-Bis-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-3-(4-methoxy-benzoyl)-thiourea **5e**

Figure S10: ¹H and ¹³C-NMR spectra of 1-[2-(4-Chloro-phenyl)-1-(4-methoxy-phenyl)-4oxo-azetidin-3-yl]-3-(4-methoxy-benzoyl)-thiourea **5f** in DMSO

2. ¹H, ¹³C-NMR and HRMS spectra of 3-aroylurea-β-lactams 8a-f

Figure S11: ¹H and ¹³C-NMR spectra of 1-Benzoyl-3-[1-(4-methoxy-phenyl)-2-oxo-4-phenyl-azetidin-3-yl]-urea **8a** in DMSO

Figure S12: HRMS spectra of 1-Benzoyl-3-[1-(4-methoxy-phenyl)-2-oxo-4-phenyl-azetidin-3-yl]-urea **8a**

Figure S13: ¹H and ¹³C-NMR spectra of 1-Benzoyl-3-[1,2-bis-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-urea **8b** in DMSO

Figure S14: HRMS spectra of 1-Benzoyl-3-[1,2-bis-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-urea 8b

Figure S15: ¹H and ¹³C-NMR spectra of 1-Benzoyl-3-[2-(4-chloro-phenyl)-1-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-urea **8c** in DMSO

Figure S16: HRMS spectra of 1-Benzoyl-3-[2-(4-chloro-phenyl)-1-(4-methoxy-phenyl)-4oxo-azetidin-3-yl]-urea **8c**

Figure S17: ¹H and ¹³C-NMR spectra of 1-(4-Methoxy-benzoyl)-3-[1-(4-methoxy-phenyl)-2oxo-4-phenyl-azetidin-3-yl]-urea **8d** in DMSO

Figure S18: HRMS spectra of 1-(4-Methoxy-benzoyl)-3-[1-(4-methoxy-phenyl)-2-oxo-4-phenyl-azetidin-3-yl]-urea 8d

Figure S19: ¹H and ¹³C-NMR spectra of 1-[1,2-Bis-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-3-(4-methoxy-benzoyl)-urea **8e** in CDCl₃

Figure S20: HRMS spectra of 1-[1,2-Bis-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-3-(4-methoxy-benzoyl)-urea **8e**

Figure S21: ¹H and ¹³C-NMR spectra of 1-[2-(4-Chloro-phenyl)-1-(4-methoxy-phenyl)-4oxo-azetidin-3-yl]-3-(4-methoxy-benzoyl)-urea **8f** in CDCl₃

Figure S22: HRMS spectra of 1-[2-(4-Chloro-phenyl)-1-(4-methoxy-phenyl)-4-oxo-azetidin-3-yl]-3-(4-methoxy-benzoyl)-urea **8f**

Figure S23: ¹H and ¹³C-NMR spectra of 1-(4-methoxy-benzoyl)-3-(4-methoxy-phenyl)-thiourea **10a** in CDCl₃

Figure S24: ¹H and ¹³C-NMR spectra of 1-Benzoyl-3-(4-methoxy-phenyl)-thiourea **10b** in CDCl₃

Figure S25: ¹H and ¹³C-NMR spectra of 1-Benzoyl-3-benzyl-thiourea 10c in CDCl₃

4. ¹H and ¹³C-NMR spectra of amide derivatives 11a-c

Figure S26: ¹H and ¹³C-NMR spectra of N-Benzyl-4-methoxy-benzamide 11a in CDCl₃

Figure S27: ¹H and ¹³C-NMR spectra of N-Benzyl-benzamide 11b in CDCl₃

Figure S28: ¹H and ¹³C-NMR spectra of N-(4-Chloro-phenyl)-4-methoxy-benzamide **11c** in CDCl₃

5. ADME parameters

	5a	5b	5c	5d	5e	5f	8a	8b	8c	8d	8e	8f	Ampicillin
MW	431.51	461.53	465.95	461.53	491.56	491.56	415.44	445.47	449.89	445.47	475.49	479.91	349.4
RB	8	9	8	9	10	10	8	9	8	9	10	9	5
HBA	3	4	3	4	5	5	4	5	4	5	6	5	5
HBD	2	2	2	2	2	2	2	2	2	2	2	2	3
TPSA	102.76	111.99	102.76	111.99	121.22	121.22	87.74	96.97	87.74	96.97	106.2	96.97	138.03
iLOGP	3.01	3.88	3.26	3.81	4.03	4.03	2.29	3.02	2.36	2.7	3.05	2.63	1.15
GIA	High	Low											
BBBP	No												
PGP	No	Yes	No	Yes	No								
CYP1A2 inhibitor	No												
CYP2C19 inhibitor	Yes	No											
CYP2C9 inhibitor	Yes	No											
CYP2D6 inhibitor	Yes	No											
CYP3A4 inhibitor	Yes	No											
log Kp (cm/s)	-5.84	-6.04	-5.61	-6.04	-6.25	-6.25	-6.17	-6.37	-5.93	-6.37	-6.57	-6.14	-9.23
Lipinski #violations	0	0	0	0	0	0	0	0	0	0	0	0	0
Veber #violations	0	0	0	0	0	0	0	0	0	0	0	0	0
Muegge #violations	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure S29: ADME parameters of *cis*-3-aroyl-thiourea/urea- β -lactams 5a-f/8a-f

6. IC50 Graphs

6.1 IC50 graphs against S. aureus

IC50= 1.66 μ g/ml

Figure S30: IC50 curve of compound 5b.

Figure S31: IC50 curve of compound 5e.

Figure S32: IC50 curve of compound 8d.

$IC50{=}~0.78~\mu\text{g/ml}$

Figure S33: IC50 curve of compound 8e.

6.2 IC50 graphs against *B. cereus*

IC50= 2.19 μ g/ml

Figure S34: IC50 curve of compound 5b.

IC50= 3.45 μ g/ml

Figure S35: IC50 curve of compound 5e.

Figure S36: IC50 curve of compound 8c.

$IC50=1.21 \ \mu g/ml$

Figure S37: IC50 curve of compound 8d.

$IC50{=}1.22~\mu\text{g/ml}$

Figure S38: IC50 curve of compound 8e.

6.3 IC50 graphs against P. aeruginosa

Figure S39: IC50 curve of compound 5a.

IC50= 1.31 μ g/ml

Figure S40: IC50 curve of compound 5b.

$IC50{=}\ 0.91\ \mu g/ml$

Figure S42: IC50 curve of compound 8d.

$IC50=0.72 \ \mu g/ml$

Figure S43: IC50 curve of compound 8e.

6.4 IC50 graphs against E. coli

$IC50{=}1.92~\mu\text{g/ml}$

Figure S44: IC50 curve of compound 5b.

IC50= $3.2 \ \mu g/ml$

Figure S45: IC50 curve of compound 8d.

Figure S46: IC50 curve of compound 8e.

6.5 IC50 graphs against C. albicans

Figure S47: IC50 curve of compound 5d.

$IC50{=}10.84~\mu\text{g/ml}$

Figure S48: IC50 curve of compound 5f.

Figure S49: IC50 curve of compound 8a.

$IC50=2.02\ \mu g/ml$

Figure S50: IC50 curve of compound 8b.

$IC50{=}~2.61~\mu\text{g/ml}$

Figure S51: IC50 curve of compound 8c.

Figure S52: IC50 curve of compound 8d.

$IC50{=}\;0.88\;\mu\text{g/ml}$

Figure S53: IC50 curve of compound 8e.

$IC50{=}1.28~\mu\text{g/ml}$

Figure S54: IC50 curve of compound 8f.

6.6 IC50 graphs against C. tropicalis

Percent inhibition against C. tropicalis

Figure S55: IC50 curve of compound 5d.

Figure S56: IC50 curve of compound 5f.

Figure S57: IC50 curve of compound 8a.

$IC50{=}~0.92~\mu\text{g/ml}$

Figure S58: IC50 curve of compound 8b.

$IC50{=}~7.38~\mu\text{g/ml}$

Figure S59: IC50 curve of compound 8c.

Figure S60: IC50 curve of compound 8d.

$IC50{=}\ 0.75\ \mu g/ml$

Figure S61: IC50 curve of compound 8e.

IC50= 0.997 µg/ml

Figure S62: IC50 curve of compound 8f.