Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Salts of barbituric and 2-thiobarbituric acids with imidazole: polymorphism, supramolecular structure, thermal stability and water solubility

Alexander P. Lakeev,^{*ab} Taisiya S. Sukhikh,^{**c} Irina A. Kurzina,^a Natalia M. Korotchenko^a and Dmitriy S. Nikitin^d

^a Faculty of Chemistry, National Research Tomsk State University, 36, Lenin Ave., Tomsk 634050, Russia

^b Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk

National Research Medical Center, Russian Academy of Sciences, 3, Lenin Ave., Tomsk 634028, Russia

 ^c Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
 ^d National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk 634050,

Russia

E-mail addresses: *lakeevs@mail.ru, lakeev_ap@pharmso.ru, **sukhikh@niic.nsc.ru

Identification code	1	2	3
CCDC number	2244541	2244540	2244542
Empirical formula	$C_7H_8N_4O_3$	$C_7H_8N_4O_3$	$C_7H_8N_4O_2S$
Formula weight	196.17	196.17	212.23
Temperature/K	150(2)	150(2)	150(2)
Space group	<i>P</i> –1	C2/m	$P2_{1}/m$
a/Å	12.0971(3)	21.3255(17)	8.5356(4)
$b/{ m \AA}$	12.1081(3)	12.1156(10)	11.9051(6)
$c/{ m \AA}$	13.3996(3)	14.6128(12)	10.5692(4)
$\alpha/^{\circ}$	80.9330(10)	90	90
β/°	73.8040(10)	119.235(3)	112.3500(10)
$\gamma^{/\circ}$	60.9000(10)	90	90
Volume/Å ³	1646.31(7)	3294.6(5)	993.33(8)
Ζ	8	16	4
$ ho_{calc}/g \times cm^{-3}$	1.583	1.582	1.419
μ/mm^{-1}	0.127	0.127	0.306
<i>F</i> (000)	816.0	1632.0	440.0
Crystal size/mm ³	$0.16 \times 0.15 \times 0.11$	$0.26 \times 0.11 \times 0.08$	$0.22 \times 0.11 \times 0.05$
Radiation	MoKa ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.166 to 55.796	3.194 to 52.768	5.16 to 52.732
Index ranges	$-15 \le h \le 15, -15 \le k \le 15, \\ -17 \le l \le 17$	$-26 \le h \le 26, -13 \le k \le 15, \\ -15 \le l \le 18$	$-10 \le h \le 10, -11 \le k \le 14, \\ -12 \le l \le 13$
Reflections collected	20792	8779	8034
Independent reflections	7799 [$R_{int} = 0.0305, R_{sigma} = 0.0389$]	$3506 [R_{int} = 0.0380, R_{sigma} = 0.0496]$	2121 [$R_{int} = 0.0276, R_{sigma} = 0.0258$]
Data/restraints/parameters	7799/32/601	3506/18/321	2121/0/136
Goodness-of-fit on F^2	1.045	1.042	1.050
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0424, wR_2 = 0.0988$	$R_1 = 0.0503, wR_2 = 0.1067$	$R_1 = 0.0342, wR_2 = 0.0828$
Final R indexes [all data]	$R_1 = 0.0539, wR_2 = 0.1068$	$R_1 = 0.0759, wR_2 = 0.1195$	$R_1 = 0.0433, wR_2 = 0.0890$
Largest diff. peak/hole/eÅ ⁻³	0.24/-0.27	0.22/-0.30	0.22/-0.23

Table S1. Crystal data and structure refinement for the compounds.

Atom	Atom	Length/Å	Atom	Atom	Length/Å	Atom	Atom	Length/Å
011_1	C12_1	1.2265(17)	012_3	C14_3	1.2600(17)	N23_5	C22_5	1.321(2)
O12_1	C14_1	1.2687(18)	013_3	C16_3	1.2666(18)	N23_5	C24_5	1.361(2)
013_1	C16_1	1.2745(17)	N11_3	C12_3	1.3630(18)	C24_5	C25_5	1.346(2)
N11_1	C12_1	1.3674(18)	N11_3	C16_3	1.3969(18)	N21_6	C22_6	1.3273(19)
N11_1	C16_1	1.3844(18)	N13_3	C12_3	1.3630(19)	N21_6	C25_6	1.369(2)
N13_1	C12_1	1.3623(19)	N13_3	C14_3	1.3910(18)	N23_6	C22_6	1.319(2)
N13_1	C14_1	1.3774(18)	C14_3	C15_3	1.398(2)	N23_6	C24_6	1.3748(19)
C14_1	C15_1	1.395(2)	C15_3	C16_3	1.389(2)	C24_6	C25_6	1.354(2)
C15_1	C16_1	1.391(2)	011_4	C12_4	1.2262(17)	N21_7	C22_7	1.328(2)
011_2	C12_2	1.2339(16)	O12_4	C14_4	1.2705(17)	N21_7	C25_7	1.369(2)
O12_2	C14_2	1.2651(17)	013_4	C16_4	1.2731(16)	N23_7	C22_7	1.324(2)
O13_2	C16_2	1.2632(16)	N11_4	C12_4	1.3663(18)	N23_7	C24_7	1.375(2)
N11_2	C12_2	1.3655(17)	N11_4	C16_4	1.3828(18)	C24_7	C25_7	1.350(2)
N11_2	C16_2	1.3983(17)	N13_4	C12_4	1.3645(18)	N21_8	C22_8	1.3201(19)
N13_2	C12_2	1.3646(18)	N13_4	C14_4	1.3815(17)	N21_8	C25_8	1.3717(19)
N13_2	C14_2	1.3971(17)	C14_4	C15_4	1.392(2)	N23_8	C22_8	1.3201(19)
C14_2	C15_2	1.3915(19)	C15_4	C16_4	1.392(2)	N23_8	C24_8	1.371(2)
C15_2	C16_2	1.391(2)	N21_5	C22_5	1.328(2)	C24_8	C25_8	1.351(2)
O11_3	C12_3	1.2352(17)	N21_5	C25_5	1.371(2)			

 Table S2. Bond lengths for non-hydrogen atoms in compound 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å	Atom	Atom	Length/Å
011_1	C11_1	1.223(3)	C13_2	C12_2 ¹	1.397(3)	C12_4	C13_4	1.393(2)
012_1	C12_1	1.275(2)	011_3	C11_3	1.235(3)	C13_4	C12_4 ¹	1.393(3)
N11_1	C11_1	1.367(2)	O12_3	C12_3	1.266(2)	N21_5	C22_5	1.320(3)
N11_1	C12_1	1.385(3)	N11_3	C11_3	1.363(2)	N21_5	C25_5	1.362(3)
C11_1	$N11_{1}^{1}$	1.367(2)	N11_3	C12_3	1.394(2)	N23_5	C22_5	1.319(3)
C12_1	C13_1	1.391(3)	C11_3	N11_3 ¹	1.363(2)	N23_5	C24_5	1.354(3)
C13_1	C12_1 ¹	1.391(3)	C12_3	C13_3	1.396(2)	C24_5	C25_5	1.349(3)
011_2	C11_2	1.228(3)	C13_3	C12_3 ¹	1.396(2)	N21_6	C22_6	1.320(3)
012_2	C12_2	1.267(2)	O11_4	C11_4	1.240(3)	N21_6	C25_6	1.357(3)
N11_2	C11_2	1.363(2)	O12_4	C12_4	1.264(3)	N23_6	C22_6	1.324(3)
N11_2	C12_2	1.386(3)	N11_4	C11_4	1.358(2)	N23_6	C24_6	1.354(3)
C11_2	$N11_2^1$	1.363(2)	N11_4	C12_4	1.396(3)	C24_6	C25_6	1.348(3)
C12_2	C13_2	1.397(3)	C11_4	N11_4 ¹	1.358(2)			

 $^{1}+X, 1-Y, +Z.$

Table S4. Bond lengths for non-hydrogen atoms in compound 3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å	Atom	Atom	Length/Å
S11_1	C12_1	1.677(2)	S11_2	C12_2	1.674(2)	N21_3	C22_3	1.321(2)
012_1	C14_1	1.2671(19)	012_2	C14_2	1.2684(19)	N21_3	C25_3	1.364(2)
N11_1	C12_1	1.3540(17)	N11_2	C12_2	1.3584(17)	N23_3	C22_3	1.325(2)
N11_1	C14_1	1.393(2)	N11_2	C14_2	1.3916(19)	N23_3	C24_3	1.366(2)
C12_1	$N11_{1}^{1}$	1.3540(17)	C12_2	$N11_2^2$	1.3584(17)	C24_3	C25_3	1.348(2)
C13_1	$C14_{1}^{1}$	1.3942(19)	C13_2	$C14_{2}^{2}$	1.3911(19)			
C13_1	C14_1	1.3942(19)	C13_2	C14_2	1.3911(19)			

1 + X, 1/2 - Y, +Z; 2 + X, 3/2 - Y, +Z.

Table S5. Hydrogen bond characteristics for the structural model of compound **1** with the hydrogen atoms refined freely with default standard uncertainty (0.02 Å) for the restraint of 0.88 Å on the N–H bonds (a); for the same model with hydrogens displaced at 0.88 Å along the corresponding N–H bond (b); for the model with geometrically placed hydrogens (lying on the external bisector of the corresponding C–N–C angle; c); for the model with non-spherical atomic scattering factors (d). Superscript at an atom corresponds to the atomic number according to Figs. 1 and 2; the number after underscore corresponds to the residue number according to Fig. 3.

Compound	Ν	Н	0	N–H, Å	Н …О, Å	N…O, Å	N–H···O, deg.
	N ¹ _1	H ¹ _1	O ⁴ _3	0.879(13)	2.100(14)	2.9561(17)	164.2(15)
	N ¹ _2	H ¹ _2	O ⁴ _4	0.860(13)	2.046(14)	2.8988(16)	171.2(15)
	N ¹ _3	H ¹ _3	O ⁴ _1	0.877(14)	1.999(14)	2.8751(16)	176.1(16)
	N ¹ _4	H^1_4	O ⁴ _2	0.862(14)	2.040(14)	2.8904(16)	168.8(16)
	N ³ _1	H^{3}_{1}	O ⁶ _3	0.895(13)	1.973(14)	2.8669(16)	176.5(16)
	N ³ _2	H ³ _2	O ⁶ _4	0.861(13)	2.195(14)	3.0056(16)	156.6(15)
	N ³ _3	H ³ _3	O ⁶ _1	0.877(13)	2.061(14)	2.9198(16)	165.9(15)
1 (a)	N ³ _4	H ³ _4	O ⁶ _2	0.883(14)	2.005(14)	2.8869(15)	177.0(16)
	N ¹ _5	H^1_5	O ⁴ _3	0.933(14)	1.816(14)	2.7444(17)	172.8(17)
	N^1_6	H^1_6	O ⁶ _2	0.898(13)	1.764(14)	2.6585(16)	173.4(16)
	N ¹ _7	H^1_7	O ⁶ _3	0.907(14)	1.765(14)	2.6664(16)	171.8(17)
	N ¹ _8	H^1_8	O ⁴ _2	0.905(14)	1.761(14)	2.6607(15)	172.4(16)
	N ³ _5	H ³ _5	O ⁶ _1	0.902(14)	1.714(14)	2.6014(16)	167.2(17)
	N ³ _6	H ³ _6	O ⁴ _4	0.897(14)	1.741(14)	2.6337(15)	173.3(16)
	N ³ _7	H ³ _7	O ⁴ _1	0.889(14)	1.777(14)	2.6593(16)	171.6(17)
	N ³ _8	H ³ _8	O ⁶ _4	0.896(14)	1.736(14)	2.6216(16)	169.3(16)
	N^{1}_{1}	H^1_1	O ⁴ _3	0.88	2.10	2.9561(17)	164.3
	N ¹ _2	H ¹ _2	O ⁴ _4	0.88 2.03		2.8988(16)	172.0
	N ¹ _3	H ¹ _3	O^{4}_{1}	0.88	2.00	2.8751(16)	175.9
	N ¹ _4	H^1_4	O^{4}_{2}	0.88	2.02	2.8904(16)	167.9
	N^{3}_{1}	H ³ _1	O ⁶ _3	0.88	1.99	2.8669(16)	175.9
	N ³ _2	H ³ _2	O ⁶ _4	0.88	2.19	3.0056(16)	155.0
	N ³ _3	H ³ _3	O^{6}_{1}	0.88	2.06	2.9198(16)	164.8
1 (b)	N ³ _4	H^{3}_{4}	O ⁶ _2	0.88	2.01	2.8869(15)	177.5
	N ¹ _5	H^1_5	O ⁴ _3	0.88	1.87	2.7444(17)	174.0
	N ¹ _6	H^1_6	O ⁶ _2	0.88	1.78	2.6585(16)	175.3
	N ¹ _7	H^1_7	O ⁶ _3	0.88	1.79	2.6664(16)	174.1
	N ¹ _8	H^1_8	O ⁴ _2	0.88	1.78	2.6607(15)	173.5
	N^3_5	H^3_5	O^{6}_{1}	0.88	1.73	2.6014(16)	169.0
	N ³ _6	H ³ _6	O ⁴ _4	0.88	1.76	2.6337(15)	174.1
	N ³ _7	H^{3}_{-7}	O ⁴ _1	0.88	1.79	2.6593(16)	171.5
	N ³ _8	H ³ _8	<u> </u>	0.88	1.75	2.6216(16)	171.3
	N ¹ _1	H^1_1	O ⁴ _3	0.88	2.09	2.9560(17)	166.3
	N^{1}_{2}	H^{1}_{2}	O^4_4	0.88	2.03	2.8982(16)	168.3
	N ¹ _3	H^1_3	O^{4}_{1}	0.88	2.00	2.8752(16)	177.4
	N ¹ _4	H^1_4	O ⁴ _2	0.88	2.02	2.8898(16)	167.6
	N ³ _1	H ³ _1	O ⁶ _3	0.88	1.99	2.8668(16)	175.2
	N ³ _2	H ³ _2	O ⁶ _4	0.88	2.19	3.0049(15)	153.1
	N ³ _3	H ³ _3	O ⁶ _1	0.88	2.08	2.9190(16)	158.2
1 (c)	N ³ _4	H ³ _4	O ⁶ _2	0.88	2.01	2.8865(15)	172.8
	N ¹ _5	H ¹ _5	O ⁴ _3	0.88	1.88	2.7460(17)	169.9
	N ¹ _6	H ¹ _6	O ⁶ _2	0.88	1.78	2.6589(16)	172.0

	N ¹ _7	H^1_7	O ⁶ _3	0.88	1.80	2.6666(16)	170.0
	N ¹ _8	H^1_8	O ⁴ _2	0.88	1.79	2.6618(16)	171.5
	N ³ _5	H ³ _5	O ⁶ _1	0.88	1.73	2.6021(16)	169.8
	N ³ _6	H ³ _6	O ⁴ _4	0.88	1.76	2.6344(16)	169.8
	N ³ _7	H ³ _7	O ⁴ _1	0.88	1.78	2.6600(16)	174.1
	N ³ _8	H ³ _8	O ⁶ _4	0.88	1.76	2.6227(16)	166.8
	N^{1}_{1}	H^1_1	O ⁴ _3	1.006(13)	1.970(14)	2.9562(13)	165.7(11)
	N ¹ _2	H ¹ _2	O ⁴ _4	0.974(12)	1.934(13)	2.9013(13)	172.1(11)
	N ¹ _3	H ¹ _3	O ⁴ _1	1.017(14)	1.861(14)	2.8764(13)	176.0(11)
	N ¹ _4	H ¹ _4	O ⁴ _2	0.959(13)	1.944(13)	2.8917(13)	169.1(11)
	N ³ _1	H ³ _1	O ⁶ _3	1.002(13)	1.866(13)	2.8657(13)	175.8(11)
	N ³ _2	H ³ _2	O ⁶ _4	0.986(12)	2.081(13)	3.0067(12)	155.5(1)
	N ³ _3	H ³ _3	O ⁶ _1	0.982(12)	1.960(13)	2.9172(13)	164.4(11)
1 (d)	N ³ _4	H ³ _4	O ⁶ _2	0.998(13)	1.891(14)	2.8881(12)	176.6(11)
	N ¹ _5	H ¹ _5	O ⁴ _3	1.051(16)	1.699(17)	2.7451(13)	172.8(13)
	N ¹ _6	H^1_6	O ⁶ _2	1.040(15)	1.620(15)	2.6551(13)	172.4(12)
	N ¹ _7	H^{1}_{7}	O ⁶ _3	1.013(14)	1.658(14)	2.6640(13)	171.5(13)
	N ¹ _8	H^1_8	O ⁴ _2	1.014(13)	1.648(14)	2.6566(12)	172.2(12)
	N ³ _5	H ³ _5	O ⁶ _1	1.030(14)	1.581(14)	2.5975(13)	167.8(13)
	N ³ _6	H ³ _6	O ⁴ _4	1.028(13)	1.606(14)	2.6303(12)	173.9(12)
	N ³ _7	H ³ _7	O ⁴ _1	0.995(14)	1.666(14)	2.6565(13)	173.0(12)
	N ³ _8	H ³ _8	O ⁶ _4	1.042(13)	1.584(14)	2.6172(12)	170.5(12)

Table S6. Hydrogen bond characteristics for the structural model of compound **2** with the hydrogen atoms refined freely with standard uncertainty (0.02 Å) for the restraint of 0.88 Å on the N–H bonds (a); for the same model with hydrogens displaced at 0.88 Å along the corresponding N–H bond (b); for the model with geometrically placed hydrogens (lying on the external bisector of the corresponding C–N–C angle; c); for the model with non-spherical atomic scattering factors (d). Superscript at an atom corresponds to the atomic number according to Figs. 1 and 2; the number after underscore corresponds to the residue number according to Fig. 3.

Compound	Ν	Н	0	N–H, Å	Н ···• О , Å	N····O, Å	N–H···O, deg.
	N ¹ _1	H ¹ _1	O ⁴ _3	0.891(16)	2.016(16)	2.906(2)	177(2)
	N ¹ _2	H^1_2	O^4_4	0.867(16)	2.030(16)	2.892(2)	173(2)
	N ¹ _3	H ¹ _3	O ⁴ _1	0.877(16)	2.023(16)	2.900(2)	178(2)
7 (a)	N ¹ _4	H^1_4	O^{4}_{2}	0.886(16)	2.028(16)	2.911(2)	175(2)
2 (a)	N ¹ _5	H^1_5	O ⁴ _3	0.890(16)	1.811(16)	2.697(2)	173(2)
	N ¹ _6	H^1_6	O^{4}_{2}	0.897(16)	1.773(17)	2.659(2)	169(2)
	N ³ _5	H ³ _5	O ⁴ _1	0.870(16)	1.782(17)	2.642(2)	170(2)
	N ³ _6	H ³ _6	O ⁴ _4	0.894(16)	1.790(16)	2.672(2)	168(2)
	N^{1}_{1}	H^1_1	O ⁴ _3	0.88	2.03	2.906(2)	177.5
	N ¹ _2	H^1_2	O ⁴ _4	0.88	2.02	2.892(2)	172.4
	N ¹ _3	H ¹ _3	O ⁴ _1	0.88	2.02	2.900(2)	178.5
2 (b)	N ¹ _4	H^1_4	O^{4}_{2}	0.88	2.03	2.911(2)	175.2
(0)	N ¹ _5	H ¹ _5	O ⁴ _3	0.88	1.82	2.697(2)	173.8
	N ¹ _6	H ¹ _6	O ⁴ _2	0.88	1.79	2.659(2)	169.9
	N ³ _5	H ³ _5	O ⁴ _1	0.88	1.77	2.642(2)	168.9
	N ³ _6	H ³ _6	O ⁴ _4	0.88	1.80	2.672(2)	169.8
	N^{1}_{1}	H^1_1	O ⁴ _3	0.88	2.03	2.905(2)	176.5
	N ¹ _2	H^1_2	O ⁴ _4	0.88	2.01	2.891(2)	177.8
	N ¹ _3	H ¹ _3	O^{4}_{1}	0.88	2.02	2.899(2)	174.9
2 (a)	N ¹ _4	H^1_4	O^{4}_{2}	0.88	2.05	2.911(2)	165.5
2(0)	N ¹ _5	H ¹ _5	O ⁴ _3	0.88	1.83	2.697(2)	170.5
	N ¹ _6	H ¹ _6	O ⁴ _2	0.88	1.79	2.659(2)	167.5
	N ³ _5	H ³ _5	O^{4}_{1}	0.88	1.78	2.642(2)	167.9
	N ³ _6	H ³ _6	O ⁴ _4	0.88	1.80	2.673(2)	169.1
	N ¹ _1	H ¹ _1	O ⁴ _3	1.04(2)	1.87(2)	2.9053(19)	177.2(16)
	N ¹ _2	H^1_2	O ⁴ _4	0.97(2)	1.93(2)	2.895(2)	171.8(18)
	N ¹ _3	H ¹ _3	O ⁴ _1	1.00(2)	1.90(2)	2.8984(19)	177.0(18)
2 (1)	N ¹ _4	H^1_4	O ⁴ _2	0.99(2)	1.92(2)	2.9121(19)	172.8(17)
2 (d)	N ¹ _5	H ¹ _5	O ⁴ _3	1.05(3)	1.64(3)	2.6944(19)	174(2)
	N ¹ _6	H ¹ _6	O ⁴ _2	1.05(3)	1.61(3)	2.6552(19)	171(2)
	N ³ _5	H ³ _5	O ⁴ _1	1.01(3)	1.64(3)	2.6403(19)	170(3)
	N ³ _6	H ³ _6	O ⁴ _4	1.04(2)	1.64(2)	2.6687(19)	169(2)

Table S7. Hydrogen bond characteristics for the structural model of compound **3** with the hydrogen atoms refined freely with default standard uncertainty (0.02 Å) for the restraint of 0.88 Å on the N–H bonds (a); for the same model with hydrogens displaced at 0.88 Å along the corresponding N–H bond (b); for the model with geometrically placed hydrogens (lying on the external bisector of the corresponding C–N–C angle; c); for the model with non-spherical atomic scattering factors (d). Superscript at an atom corresponds to the atomic number according to Figs. 1 and 2; the number after underscore corresponds to the residue number according to Fig. 3.

Compound	Ν	Н	0	N–H, Å	H…O, Å	N…O, Å	N–H···O, deg.
	N ¹ _1	H^1_1	O ⁴ _2	0.870(14)	1.956(14)	2.8244(17)	175.8(17)
2 (a)	N ¹ _2	H^1_2	O^{4}_{1}	0.863(14)	1.942(14)	2.8030(17)	175.6(16)
3 (a)	N ¹ _3	H ¹ _3	O ⁴ _2	0.864(14)	1.855(14)	2.7106(17)	169.9(18)
	N ³ _3	H ³ _3	O^{4}_{1}	0.857(14)	1.853(15)	2.6942(17)	166.7(18)
	N ¹ _1	H^1_1	O ⁴ _2	0.88	1.95	2.8244(17)	175.2
2 (b)	N ¹ _2	H^1_2	O^{4}_{1}	0.88	1.93	2.8030(17)	175.1
3 (0)	N ¹ _3	H ¹ _3	O ⁴ _2	0.88	1.84	2.7106(17)	168.7
	N ³ _3	H ³ _3	O^{4}_{1}	0.88	1.83	2.6942(17)	166.2
	N ¹ _1	H^1_1	O ⁴ _2	0.88	1.95	2.8240(17)	175.9
2 (a)	N ¹ _2	H^1_2	O^{4}_{1}	0.88	1.92	2.8028(17)	178.6
3(0)	N ¹ _3	H ¹ _3	O ⁴ _2	0.88	1.85	2.7108(17)	165.8
	N ³ _3	H ³ _3	O^{4}_{1}	0.88	1.83	2.6939(17)	167.6
	N ¹ _1	H^1_1	O ⁴ _2	1.047(14)	1.776(14)	2.8225(11)	177.5(10)
3 (d)	N ¹ _2	H^1_2	O^{4}_{1}	1.037(15)	1.768(15)	2.8029(12)	176.0(11)
	N ¹ _3	H ¹ _3	O ⁴ _2	1.007(14)	1.709(15)	2.7067(11)	170.2(14)
	N ³ _3	H ³ _3	O ⁴ _1	1.007(15)	1.698(16)	2.6907(11)	167.8(13)

Table S8. Geometry characteristics of a pair of HBA⁻ anions that hydrogen-bonded with each other in a side-to-side fashion in structures found in Cambridge Structural Database (CSD; version 5.43, updates up to November 2022) and in 1–3. γ (deg.) – Dihedral angle between the mean planes; d1,2 (Å) – N···O distance; $\alpha 1,2$ (deg.) – N–H···O angle, R_1 (%) – factor, Z – cell formula units; Z' – number of HBA⁻ in crystallographically independent part; T (K) – experiment temperature.

CSD Refcode	γ	<i>d</i> 1	<i>d</i> 2	α1	α2	R_1	Ζ	Z'	Т	Compound name
EVELAV	49.9	2.83	2.83	173.5	173.5	6.5	8	1	150	8-(dimethylamino)-N,N-dimethylnaphthalen-1-aminium barbiturate unknown solvate
VUKFIR	42.6	2.80	2.83	163.7	169.4	5.1	6	0.5	298	catena-[(µ2-4,4'-bipyridine-N,N')-tetra-aqua-nickel(II) bis(barbiturate) hexahydrate]
VUKFOX	42.5	2.80	2.83	163.5	169.8	5.3	6	0.5	298	catena-[(µ2-4,4'-bipyridine-N,N')-tetra-aqua-copper(II) bis(barbiturate) hexahydrate]
VUKFEN	38.2	2.81	2.81	169.3	169.3	3.3	3	0.25	298	catena-[(μ_2 -4,4'-bipyridine-N,N')-tetra-aqua-cobalt(II) bis(barbiturate) hexahydrate]
BUYYIE	38.0	2.82	2.82	167.6	167.6	4.2	3	0.25	293	catena-[(μ_2 -4,4'-bipyridine)-tetra-aqua-zinc(II) bis(barbiturate) hexahydrate]
BUYYEA	37.2	2.83	2.83	170.3	170.3	3.3	3	0.25	293	catena-[(µ2-4,4'-bipyridine)-tetra-aqua-iron(II) bis(barbiturate) hexahydrate]
BENWUO	30.8	2.81	2.83	177.2	174.4	3.7	4	2	100	2-[(2,6-dimethylphenyl)amino]-N,N-diethyl-2-oxoethanaminium barbiturate
BENWUO	18.1	2.75	2.75	170.9	174.6	3.7	4	2	100	2-[(2,6-dimethylphenyl)amino]-N,N-diethyl-2-oxoethanaminium barbiturate
KEDZAV	16.0	2.80	2.92	174.4	176.5	5.8	16	4	120	8-dimethylaminonaphthalene-1-dimethylammonium barbiturate methanol solvate
KEDZAV	14.3	2.78	2.97	174.7	170.1	5.8	16	4	120	8-dimethylaminonaphthalene-1-dimethylammonium barbiturate methanol solvate
INEYOQ	12.8	2.79	2.79	176.9	176.9	5.7	4	0.5	293	$catena-[(\mu_2-1,2-bis(4-pyridyl)ethane)-tetra-aqua-cobalt(II)\ bis(barbiturate)\ tetrahydrate]$
KEDZAV	10.9	2.86	2.89	174.3	179.3	5.8	16	4	120	8-dimethylaminonaphthalene-1-dimethylammonium barbiturate methanol solvate
INEYUW	10.8	2.79	2.79	175.3	175.3	3.6	4	0.5	293	catena-[(µ2-1,2-bis(4-pyridyl)ethane)-tetra-aqua-iron(II) bis(barbiturate) tetrahydrate]
INEZEH	10.7	2.81	2.81	176.0	176.0	5.0	4	0.5	293	$catena-[(\mu_2-1,2-bis(4-pyridyl)ethane)-tetra-aqua-manganese(II)\ bis(barbiturate)\ tetrahydrate]$
ZABVAD	10.6	2.77	2.87	158.4	171.4	4.7	4	2	301	2-amino-6-methylpyridinium barbiturate dihydrate
WOPLIY	10.6	2.79	2.79	177.5	176.2	3.7	8	1	120	tributyl-N-(4-methoxyphenyl)phosphoraniminium barbiturate
GATLIY	9.3	2.80	2.80	173.0	173.0	3.3	4	0.5	293	$catena-[(\mu_2-(trans)-4,4'-ethene-1,2-diyldipyridine)-tetra-aqua-iron(II)\ bis(barbiturate)\ tetrahydrate]$
KEDZAV	7.6	2.77	2.90	172.9	176.5	5.8	16	4	120	8-dimethylaminonaphthalene-1-dimethylammonium barbiturate methanol solvate
ERELUL01	6.6	2.79	2.98	177.9	175.5	4.5	4	1	150	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
ERELUL01	6.6	2.80	2.97	174.7	178.0	4.5	4	1	150	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
ERELUL	6.2	2.80	2.99	165.5	175.6	5.6	4	1	120	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
ERELUL	6.2	2.79	2.97	171.9	176.1	5.6	4	1	120	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
NEBFUY	5.8	2.84	2.98	174.1	178.5	5.5	4	2	296	4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-methylpiperazin-1-ium barbiturate hydrate
JURLUG	4.7	2.79	2.80	172.4	170.3	2.7	4	1	293	aqua-bis(1,10-phenanthroline)-copper bis(barbiturate) trihydrate
QEPFIB	4.6	2.79	2.81	169.1	176.2	9.2	4	2	293	methylammonium barbiturate
QEPFIB	4.6	2.81	2.84	173.0	168.3	9.2	4	2	293	methylammonium barbiturate

DEFWUJ	3.3	2.82	3.12	177.2	170.6	2.5	4	0.5	295	tetraaqua-bis(barbiturate)-cobalt(II)
ESIDES	2.6	2.78	2.94	176.9	169.8	3.9	4	1	150	hexa-aqua-magnesium bis(barbiturate) trihydrate
DEFWUJ01	2.1	2.82	3.09	164.2	170.1	9.4	4	0.5	150	tetra-aqua-bis[6-oxypyrimidine-2,4(1H,3H)-dione]-cobalt
GUYRUN03	1.2	2.72	3.14	167.4	164.9	4.9	8	0.5	296	triaqua-bis(6-oxidopyrimidine-2,4(1H,3H)-dione)-copper(II)
GUYRUN02	1.1	2.71	3.11	174.4	168.3	1.2	8	0.5	93	triaqua-bis(barbiturato-O)-copper(II)
GUYRUN04	1.1	2.72	3.13	163.5	164.8	2.7	8	0.5	150	triaqua-bis[6-oxypyrimidine-2,4(1H,3H)-dione]-copper
ERELUL01	0.8	2.83	2.84	174.7	172.1	4.5	4	1	150	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
ERELUL01	0.8	2.86	2.86	167.8	173.5	4.5	4	1	150	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
QEPFOH	0.6	2.90	2.91	178.4	177.1	6.2	8	1	293	dimethylammonium barbiturate
CUHBAL	0.0	2.91	2.91	164.5	164.5	5.1	4	1	296	catena-[(µ-pyridine-4-carbohydrazide)-triaqua-cobalt(II) bis(barbiturate) trihydrate]
CUHBEP	0.0	2.91	2.91	170.1	170.1	3.5	4	1	296	catena-[(µ-pyridine-4-carbohydrazide)-triaqua-zinc(II) bis(barbiturate) trihydrate]
ERELUL	0.0	2.82	2.82	178.0	178.0	5.6	4	1	120	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
ERELUL	0.0	2.85	2.85	178.8	178.8	5.6	4	1	120	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
ERELUL	0.0	2.85	2.85	173.1	173.1	5.6	4	1	120	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
ERELUL	0.0	2.86	2.86	172.3	172.3	5.6	4	1	120	catena-[tetrakis(µ-barbiturate)-hexadeca-aqua-tetra-calcium tetrakis(barbiturate)]
ESOZOD	0.0	2.86	2.86	172.8	172.8	4.9	4	1	173	2,4-diaminopyridinium barbiturate
EVELAV	0.0	2.82	2.82	174.9	174.9	6.5	8	1	150	8-(dimethylamino)-N,N-dimethylnaphthalen-1-aminium barbiturate unknown solvate
GATLEU	0.0	2.79	2.79	173.4	173.4	3.6	1	0.5	293	(trans)-4,4'-ethene-1,2-diyldipyridinium bis(barbiturate) dihydrate
GIGQOD	0.0	2.89	2.89	178.3	178.3	5.1	2	1	293	2-amino-4,6-dimethylpyrimidinium barbiturate trihydrate
GIGQOD	0.0	2.85	2.85	175.3	175.3	5.1	2	1	293	2-amino-4,6-dimethylpyrimidinium barbiturate trihydrate
KEWSOX	0.0	2.83	2.83	173.4	173.4	5.9	4	1	296	4-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium barbiturate monohydrate
KINFEV	0.0	2.80	2.80	174.1	174.1	2.9	8	1	100	aqua-(2,2'-bipyridyl)-(barbiturate)-chloro-copper(II) dihydrate
MYTUW	0.0	2.86	2.86	175.2	175.2	7.7	4	1	293	1-aminoisoquinolinium barbiturate hemihydrate
MYVEI	0.0	2.81	2.81	177.6	177.6	5.9	2	1	300	1,10-phenanthrolinium barbiturate monohydrate
MYVIM	0.0	2.86	2.86	174.8	174.8	5.4	2	1	300	4-methoxypyridinium barbiturate dihydrate
OQOXOJ	0.0	2.87	2.87	177.6	177.6	3.9	4	0.5	293	diaqua-bis(4,4'-dimethyl-2,2'-bipyridine)-nickel(II) bis(barbiturate) tetrahydrate
OQOXUP	0.0	2.87	2.87	173.4	173.4	5.8	4	0.5	293	diaqua-bis(4,4'-dimethyl-2,2'-bipyridine)-manganese(II) bis(barbiturate) tetrahydrate
QAFSOF	0.0	2.95	2.95	173.8	173.8	4.6	8	1	295	pyrimidine-2,4,6-trione barbiturate sesquihydrate
RAYJOT	0.0	2.85	2.85	176.6	176.6	1.4	2	1	295	catena-[(µ-aqua)-bis(µ-barbiturate)-aqua-barium]
REZFIM	0.0	2.90	2.90	161.1	161.1	9.0	2	1	293	(barbiturate)(hydridotris(5-methyl-3-phenyl-1-pyrazolyl)borato)zinc(II) methanol solvate
SUYNIM	0.0	2.91	2.91	174.3	174.3	9.0	2	1	293	1,3-dihydroxy-4,5-dimethyl-1H-imidazol-3-ium barbiturate
SUYNIM	0.0	2.86	2.86	174.0	174.0	9.0	2	1	293	1,3-dihydroxy-4,5-dimethyl-1H-imidazol-3-ium barbiturate
UFUWAW	0.0	2.86	2.86	178.0	178.0	6.1	4	0.5	100	diaqua-bis(1,10-phenanthroline)-cobalt(II) bis(barbiturate) dihydrate

ZIMTIA	0.0	2.79	2.79	174.9	174.9	5.5	8	1	293	potassium barbiturate hemikis(pyrimidine-2,4,6(1H,3H,5H)-trione) sesquihydrate
	13.0	2.87	2.96	176.5	164.2					
1	13.0	2.90	3.01	171.2	156.6	4.2	0	4	150	imidazalium barbiturata
1	16.6	2.88	2.92	176.1	165.9	4.2	0	4	150	initiazonun bai biturate
	16.6	2.89	2.89	177.0	168.8					
	7.0	2.91	2.91	177.2	177.2				150	
2	11.0	2.89	2.89	173.2	173.2	5.0	16	2		imidagaliyan kashityanta
2	7.0	2.90	2.90	178.2	178.2	5.0	10	2	150	initazonun barbiturate
	11.0	2.91	2.91	175.2	175.2					
3	0.7	2.82	2.80	175.8	178.6	3.4	4	1	150	imidazolium 2-thiobarbiturate

Table S9. Geometry characteristics of a pair of HBA⁻ anions that hydrogen-bonded with each other in a head-tohead fashion in structures found in Cambridge Structural Database (CSD; version 5.43, updates up to November 2022) and in **1–3**. γ (deg.) – Dihedral angle between the mean planes; d1,2 (Å) – N···O distance; $\alpha 1,2$ (deg.) – N– H···O angle, R_1 (%) – factor, Z – cell formula units; Z' – number of HBA⁻ in crystallographically independent part; T (K) – experiment temperature.

CSD Refcode	γ	d1	d2	α1	α2	R_1	Ζ	Z'	Т	Compound Name
AMBARB	0.0	2.81	2.81	162.3	162.3	15.0	4	1	295	ammonium barbiturate
AMBARB01	0.0	2.83	2.83	172.3	172.3	3.9	4	1	293	ammonium barbiturate
CUHBOZ	0.0	2.86	2.86	167.4	167.4	2.9	1	0.5	296	tetra-aqua-bis(pyridine-3-carboxamide)-cobalt(II) bis(barbiturate) dihydrate
CUHBUF	0.0	2.87	2.87	167.5	167.5	3.0	1	0.5	296	tetra-aqua-bis(pyridine-3-carboxamide)-zinc(II) bis(barbiturate) dihydrate
CURKEH	0.0	2.89	2.89	171.7	171.7	8.2	2	1	296	4-(3-carboxy-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2-methylpiperazin-1-ium barbiturate pyrimidine- 2,4,6(1H,3H,5H)-trione hydrate
CURKIL	0.0	2.82	2.82	175.5	175.5	8.8	2	1	296	4-(3-carboxy-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2-methylpiperazin-1-ium barbiturate isophthalic acid methanol solvate monohydrate
DEFXAQ	0.0	2.85	2.85	178.7	178.7	4.0	4	0.25	295	catena-[bis(µ-barbiturate)-diaqua-cobalt(II)]
ESIDES	15.1	3.04	2.90	169.5	175.8	3.9	4	1	150	hexa-aqua-magnesium bis(barbiturate) trihydrate
GATLEU	0.0	2.88	2.88	176.0	176.0	3.6	1	0.5	293	(trans)-4,4'-ethene-1,2-diyldipyridinium bis(barbiturate) dihydrate
GATLIY	9.3	2.85	2.85	176.0	176.0	3.3	4	0.5	293	catena-[(µ-(trans)-4,4'-ethene-1,2-diyldipyridine)-tetra-aqua-iron(II) bis(barbiturate) tetrahydrate]
HOLFET	0.0	2.86	2.86	171.9	171.9	11.9	2	1	295	(1-(4,6-diamino-5h-1,3,5-triazine-2-yl)-1,3,6,10,13-penta-azacyclotetradecane)-bis(perchlorato)-copper(II) barbiturate trihydrate
INEYOQ	12.8	2.83	2.83	170.9	170.9	5.7	4	0.5	293	$catena-[(\mu-1,2-bis(4-pyridyl)ethane)-tetra-aqua-cobalt(II)\ bis(barbiturate)\ tetrahydrate]$
INEYUW	10.8	2.84	2.84	174.4	174.4	3.6	4	0.5	293	catena-[(µ-1,2-bis(4-pyridyl)ethane)-tetra-aqua-iron(II) bis(barbiturate) tetrahydrate]
INEZEH	10.7	2.86	2.86	172.2	172.2	5.0	4	0.5	293	catena-[(µ-1,2-bis(4-pyridyl)ethane)-tetra-aqua-manganese(II) bis(barbiturate) tetrahydrate]
JURLUG	4.7	2.87	2.91	174.8	168.4	2.7	4	1	293	aqua-bis(1,10-phenanthroline)-copper bis(barbiturate) trihydrate
KEWSOX	0.0	2.92	2.92	163.1	163.1	5.9	4	1	296	4-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium barbiturate monohydrate
KINFEV	0.0	2.76	2.76	168.1	168.1	2.9	8	1	100	aqua-(2,2'-bipyridyl)-(barbiturate)-chloro-copper(II) dihydrate
MUYVIM	0.0	2.96	2.96	173.7	173.7	5.4	2	1	300	4-methoxypyridinium barbiturate dihydrate
NEBFUY	5.8	2.98	2.85	162.8	169.0	5.5	4	2	296	4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-methylpiperazin-1-ium barbiturate hydrate
OQEPAD	0.0	2.85	2.85	167.3	167.3	5.1	4	0.5	293	tetra-aqua-(5,5'-dimethyl-2,2'-bipyridine)-cobalt(II) bis(barbiturate) dihydrate
RAGLAO	0.0	2.87	2.87	179.1	179.1	1.9	4	0.25	295	catena-(bis(µ-barbiturate)-diaqua-di-manganese(II))
RAGLAO01	0.0	2.85	2.85	176.2	176.2	2.7	4	0.25	120	catena-(bis(µ-barbiturate)-diaqua-manganese)
REZFIM	0.0	2.91	2.91	162.4	162.4	9.0	2	1	293	(barbiturate)(hydridotris(5-methyl-3-phenyl-1-pyrazolyl)borato-)zinc(II) methanol solvate
UFUWAW	0.0	2.88	2.88	175.1	175.1	6.1	4	0.5	100	diaqua-bis(1,10-phenanthroline)-cobalt(II) bis(barbiturate) dihydrate
ZABVAD	10.6	2.97	2.84	165.4	171.5	4.7	4	2	301	2-amino-6-methylpyridinium barbiturate dihydrate

Fig. S1. Crystallographically independent part of structures **1–3** with numbering of non-hydrogen atoms. Atomic displacement ellipsoids are shown at the 50% probability level.

Fig. S2. Photographs of 1 (left) and 2 (right) in the crystal and powder forms.

Fig. S3. Species distribution diagrams of H₂BA (a), H₂TBA (b) and Im (c) as a function of pH: α_2 [H₂(T)BA], α_1 [H(T)BA⁻] (a, b) or [HIm⁺] (c), α_0 [(T)BA²⁻] (a, b) or [Im] (c) (*C* = 0.01 mol/L).

(a) (b) **Fig. S4.** The structure of a layer in 2 composed from hydrogen-bonded HBA⁻ and HIm⁺ ions (a). The hydrogen bonds N–H…O are highlighted with red dashed lines. A fragment of the layer showing weak C–H…O contacts (b) highlighted with grey dashed lines.

Fig. S5. Arrangement of inversion-related A and D layers in compounds **1** (a) and **2** (b). The corresponding B and C layers are not shown for clarity.

Fig. S6. Fingerprint plots for four crystallographically independent HBA⁻ anions in compound **1** calculated in CrystalExplorer. *di* And *de* are the distances (Å) from the Hirshfeld surface to the nearest nucleus inside and outside the surface, correspondingly.

Fig. S7. Fingerprint plots for four crystallographically independent HBA⁻ anions in compound 2 calculated in CrystalExplorer. *di* And *de* are the distances (Å) from the Hirshfeld surface to the nearest nucleus inside and outside the surface, correspondingly.

Fig. S8. Fingerprint plots for two crystallographically independent HTBA⁻ anions in compound **3** calculated in CrystalExplorer. *di* And *de* are the distances (Å) from the Hirshfeld surface to the nearest nucleus inside and outside the surface, correspondingly.

Fig. S9. Powder X-ray diffraction (XRD) patterns of the starting materials (a), salts **1**, **2** (b) and **3** (c) from the experimental study (exp) and simulated from the single-crystal XRD data (sim). Some characteristic peaks of **1** observed in the experimental XRD pattern of **2** (b) are highlighted as *.

Fig. S10. Infrared spectra of the starting materials and salts 1–3.

Fig. S11. Ultraviolet spectra of aqueous solutions (t = 25 °C) of H₂BA : Im mixture ($C_{acid} = 3 \cdot 10^{-5}$ mol/L, $C_{Im} = 6 \cdot 10^{-5}$ mol/L, pH 6.30; *I*a), salt **2** ($C_{acid} = C_{Im} = 4 \cdot 10^{-5}$ mol/L, pH 6.57; *2*a), H₂BA ($C = 3 \cdot 10^{-5}$ mol/L, pH 6.84; *3*a), Im ($C = 6 \cdot 10^{-5}$ mol/L, pH 7.26; *4*a) and H₂TBA : Im mixture ($C_{acid} = 3 \cdot 10^{-5}$ mol/L, $C_{Im} = 6 \cdot 10^{-5}$ mol/L, pH 6.13; *I*b), salt **3** ($C_{acid} = C_{Im} = 4 \cdot 10^{-5}$ mol/L, pH 6.04; *2*b), H₂TBA ($C = 3 \cdot 10^{-5}$ mol/L, pH 6.83; *3*b), Im ($C = 6 \cdot 10^{-5}$ mol/L, pH 7.26; *4*b).

