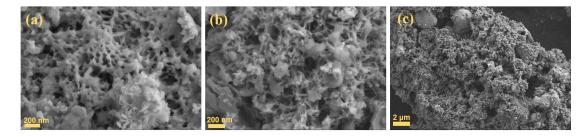
Electronic Supplementary Material (ESI) for New Journal of Chemistry.


This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Material

Composites hybridized with Ca(OH)₂ and LaMnO₃ synergistically improve phosphate adsorption properties

Menghan Feng^{a,b}, Mengmeng Li^{a,b}, Changbin Guo^{a,b,c}, Xueyan Zhang^{a,b}, Tian Yuan^{a,b,d}, Keqiang Zhang^a, Feng Wang^{a,b,*}

- ^a Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- ^b Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali 671004, China ^c College of Grass industry and Environmental Science, Xinjiang Agricultural University, Urumqi 830052, China
- ^d College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China
- * Corresponding author:wangfeng 530@163.com (F. W).

Section A. Experimental

Fig. S1 Ca_0 -LMO(a), $Ca_{0.4}$ -LMO(b), $Ca_{0.7}$ -LMO(c) images magnified by SEM