## SUPPORTING INFORMATION

## ATMOSPHERIC DEGRADATION MECHANISM AND KINETICS OF MENTHOL INITIATED BY HYDROXYL RADICAL

## Angappan Mano Priya<sup>1</sup> and Basheer Aazaad<sup>2\*</sup>

<sup>1</sup> PSGR Krishnammal college for Women, Coimbatore-641004, Tamil Nadu, INDIA

<sup>2</sup> Centre for Astrophysics and Space Science, ELTE Eötvös Loránd University, P.O. Box 32, H-1518, Budapest, Hungary

Corresponding Author: <u>aazaadb@gmail.com</u>





RC





TS1

IC1





I1

TS2





IC2





TS3





**I3** 

TS4





IC4





IC5

TS5









IC6















IC8







TS9



I9



IC10





**TS11** 







H<sub>2</sub>O



Figure S1 The optimized structures of reactant, reactant complex, transition states, intermediate complexes and

H12

intermediates at M06-2X/6-311+G(d,p) level of theory.





I12+NO

TS12





**TS13** 





**TS14** 

O



**P1** 

Figure S2 The structures of secondary reactions of intermediates (I2) optimized at M06-2X/6-311+G(d,p) level of theory.





Figure S3 The intrinsic reaction coordinate (IRC) profile of all initial reactions optimized at M06-2X/6-311+G(d,p) level of theory.

| T (K) | $\mathbf{k}_{\mathbf{I}\mathbf{I}}$ | $\mathbf{k_{I2}}$ | $\mathbf{k_{I3}}$ | $k_{I4}$ | <b>k</b> <sub>15</sub> | k <sub>16</sub> | <b>k</b> 17 | k <sub>18</sub> | <b>k</b> 19 | k <sub>10</sub> | $\mathbf{k}_{\mathbf{I}\mathbf{I}}$ |
|-------|-------------------------------------|-------------------|-------------------|----------|------------------------|-----------------|-------------|-----------------|-------------|-----------------|-------------------------------------|
| 278   | 1.61                                | 1.47              | 1.54              | 1.25     | 2.68                   | 1.22            | 1.97        | 1.68            | 1.51        | 1.45            | 1.21                                |
| 288   | 1.57                                | 1.44              | 1.50              | 1.23     | 2.57                   | 1.20            | 1.90        | 1.63            | 1.48        | 1.42            | 1.20                                |
| 298   | 1.53                                | 1.41              | 1.47              | 1.22     | 2.46                   | 1.19            | 1.84        | 1.59            | 1.45        | 1.39            | 1.19                                |
| 300   | 1.53                                | 1.41              | 1.46              | 1.21     | 2.44                   | 1.19            | 1.83        | 1.58            | 1.44        | 1.39            | 1.18                                |
| 400   | 1.30                                | 1.23              | 1.26              | 1.12     | 1.81                   | 1.10            | 1.47        | 1.33            | 1.25        | 1.22            | 1.10                                |
| 500   | 1.19                                | 1.15              | 1.17              | 1.08     | 1.52                   | 1.07            | 1.30        | 1.21            | 1.16        | 1.14            | 1.07                                |

 Table S1 Wigner tunneling factor of H-atom abstraction of Menthol with OH radical calculated at M06-2X/6-311+g(d,p) level of theory.