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Methods

General characterization. The 'H and '3C NMR spectra were taken on a Bruker DRX 300.
Mass spectroscopy samples were analyzed on a JEOL JMS-700 mass spectrometer. The high
resolution mass spectra (HR-MS) were measured by electrospray ionization (ESI) with a micro
TOF Focus spectrometer from SYNAPT G2 (Waters, U.K.). A UV-visible spectrophotometer
(Jasco V-750) was used to obtain the absorption spectra. IR spectra were observed over the

range 500-4000 cm-!, with a Thermo Scientific Nicolet iS 10 instrument.

UV-vis studies: The UV-vis spectra were determined over the range of 200-700 nm using a
quartz cell with 1, 2, and 10 mm path lengths. Scans were taken at the rate of 500 nm/min with

a sampling interval of 0.5 nm and a response time of 0.5 s.

Rheological Properties: The gels were loaded onto the rheometer plate according to the
standard. Rheological properties were carried out by using AR-2000ex (TA Instruments Ltd.,
New Castle, DE, USA). A parallel plate with a diameter of 20 mm was used. The gap between
the gel and the plate was set to 0.5 mm, and the experiments were carried out at 25 °C. Strain
sweep tests were carried out with increasing amplitude oscillation from 0.1 % to 100 %
apparent strain on the shear. Frequency sweep tests were carried out between 0.1 and 100 rad

sl

SEM observation. FE-SEM images were observed using a JEOL (JSM-7900F). The images
of samples using an accelerating voltage 10 kV and an emission current of SuA. Samples were
prepared by dropping dilute solution of supramolecular metallogels formed in a mixture of
MeOH and H,O (1:1 v/v) on glasses following by spinning, drying, and coating them with a

thin layer of Pt to increase the contrast.

Temperaute-dependent Isodesmic model. The isodesmic model assumes a single
equilibrium constant K, during all aggregation steps. It is also known as the equal-K model.!
For an isodesmic aggregation pathway, the experimental a,, values can be related to
temperature by a sigmoidal relation. The sigmoidal function for a (0 < a < 1) can generally be

expressed as Eq. (1):



T-T,
1+ exp| - 0.908AH
a(T)= RT, (eq. 1)

where T, is melting temperature when o = 0.5, AH is the molar enthalpy release related to the

formation of non-covalent intermolecular interactions, and R is the universal gas constant.

Preparation of gel. 1 (5 mg, 0.78 mmol) and Ln(NOs); (3.0 equivalent) with different Eu/Tb
molar ratios, and the mixture of MeOH/water (v/v, 1:1) 500 pL of solvent was added. The
mixture was sonicated to form the metallogel, followed by heating at 60 °C for 5 minutes in an
oil bath, which was then allowed to cool gradually in the same oil bath to room temperature.
Gels were left to stabilize overnight before measurements were performed. The vial inverting
method was employed for determining the CGC of the samples. Following the above
procedure, the gels were prepared with the provided concentrations in vials. The CGCs were
determined as the samples did not flow for 60 s after the vials were inverted at room

temperature.



Material synthesis

All chemical reagents were purchased commercially without further purification unless

otherwise noted.

Synthesis of compound 3. terpyridine-4’-carbozylic acid(0.1 g, 0.36 mmol),glycine-methyl ester(0.054
g, 0.43 mmol), HOBt(0.0487 g, 0.36 mmol), EDC-HCI(0.104 g, 0.54 mmol) was added to a 100 mL
round bottom flask. Anhydrous DCM(10 mL), DMF(2.5 mL) was then injected, and the reaction
mixture was stirred at room temperature. Triethylamine (TEA, 0.15 mL, 1.08 mmol) was added slowly
at 0 °C. The reaction mixture was stirred for 1h and was heated up to room temperature. After stirring
for 2days at room temperature, the mixture was extracted with EA. The combined organics were washed
with brine, dried Magnesium sulfate(MgSO,) and concentrated. The resulting crude product was
purified by recrystallization from EA and Hexane to give Compound 3 (90 %) white solid. '"H NMR
(300 MHz, CDCl;, ppm): 6= 8.88(s, 2H, Ar), 8.76(m, 2H, Ar), 8.65(d, 2H, Ar), 7.93(td, 2H,Ar),
7.41(ddd, 2H, Ar), 7.19(s, 1H, NH), 4.35(d, 2H,CH,), 3.85(s,3H, CH3;). 3C-NMR(125 MHz, CDCl;) 3;
170.10, 165.90, 156.54, 155.36, 149.26, 143.07, 136.96, 124.21, 121.33, 118.40, 52.57, 41.82 ESI-MS
(m/z): Calculated for C1oHsN,O3 [M+H]* 349.37, Found [M+H]* 349 .33, [2M+Na*] 718.75.

Synthesis of compound 2. Compound 3 (0.5 g, 1.43 mmol) was dissolved in MeOH(50 mL) and
ethylenediamine(2.3 mL, 3.44 mmol) was added to a flask at 0 °C. The reaction mixture was stirred for
30 minutes and was heated up to room temperature and stirred for 1days. The resulting crude product
was purified by recrystallization from toluene, washed with ether. Yield was (95 %). 'H NMR(300
MHz, DMSO-dy) §9.35(s, |H,NH), 8.88(s, 2H, Ar), 8.78(m, 2H, Ar), 8.67(d, 2H, Ar), 8.06(td, 2H, Ar),
7.99(S, 1H,NH), 7.55(m, 2H, Ar), 3.93(d, 2H, CH,), 3.10(q, 3H, CH,), 2.59(t, 2H, NH,). 3C-NMR(125
MHz, CDCl;) 6; 169.01, 165.46, 156.15, 155.05, 149.87, 144.23, 138.05, 125.22, 121.44, 118.94, 43.35,
42.64, 41.70 ESI-MS (m/z): Calculated for C,H,NO, [M+H]" 377.43, [2M+H]* 753.85, Found
[M+H]" 377.25, [2M+Na] * 752.83.

Synthesis of compound 1. Compound 2 (0.1 g, 0.27 mol), Stearoyl chloride(0.12 mL, 0.35 mmol) was
dissolved in DCM(10 mL) and triethylamine (TEA, 0.2 mL, 1.35 mmol) was added to a 100 mL round
bottom flask at 0 °C. The reaction mixture was stirred for 30 minutes and was heated up to room
temperature. After stirring for 1days at room temperature, the mixture was extracted with DCM. The
combined organics were washed with water, dried Magnesium sulfate(MgSQO,) and concentrated. The
resulting crude product was purified by recrystallization from DCM and ether to give white solid,
compound 1 (84 %). 'H NMR(300MHz, CDCls) 88.79(s, 1H, Ar), 8.70(s, 2H, Ar), 8.55(d, 2H, Ar),
7.87(td, 2H, Ar), 7.73(s, 1H, NH), 7.38(ddd, 2H, Ar), 7.25(s, 1H,NH), 6.40(s, 1H, NH), 4.22(d,
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2H,CH,), 3.47(s,4H, 2CH,), 1.24(m, 32H,16CH,),0.89(m, 2H, CH;) ;3C-NMR(125 MHz, CDCL) §;
174.74, 169.53, 166.46, 158.28, 155.20, 149.13, 142.68, 136.90, 124.20, 121.28, 118.38, 45.84, 43.92,
40.30, 39.45, 36.64, 31.93, 29.71, 29.67, 29.62, 29.51, 29.37, 29.34, 29.30, 25.65, 22.70, 41.13, 8.68
ESI-MS (m/z): Calculated for CssHssNgO5 [M+H]* 643.90, [2M+Na]* 1308.77, Found [M+H]"* 643.42,
[2M+Na] * 1307.08.

Stearoyl Chloride I
o

TEA, DCM

compound 3 compound 2 N

compound 1

Scheme S1. Synthesis route to compound 1.
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Fig.S3 Plot of emission intensity of 1 (1 x 107% M) upon titrating with (a) Eu(NOj3); and (c)
Tb(NOs3); (0-9.0 equiv.) in methanol at 298 K. Benesi-Hildebrand plot to calibrate association
constant of 1 to (b) Eu(IlI) and (d) Tb(III) ions.



Fig. S4 Photograph of supramolecular metallogels (1 wt%) at various molar ratios of Eu:Tb in
the mixture of MeOH/water (v/v, 1:1). (a) 1 only, (b) Eu:Tb=0:10, (c) Eu:Tb=10:0, (d)
Eu:Tb=6:4, (¢) Eu:Tb=12:13.
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Fig. S5 Photograph of supramolecular gels at different concentrations (0.5-1.0 wt%) of (a) 1
only, (b) 1-Eu, and (c) 1-Tb in the mixture of MeOH/water (v/v, 1:1).
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Fig. S6 ESI-MS spectrum of 1 with Eu(III).
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Fig. S7 ESI-MS spectrum of 1 with Tb(III).
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Fig. S8 UV-vis absorption and emission spectra of 1 (0.1 mM) with (a and c¢) Eu(IIl) and (b
and d) Tb(III) ions at different concentrations (0-3.0 equiv.) (Aex = 322 nm).
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Fig. S9 (a) Temperature-dependent UV-vis spectra changes of 1-Tb (0.1 mM) in the mixture
of MeOH and water (v/v, 1:1). (b) Heating curve of 1-Tb, monitoring the absorption at 340 nm.
The red line denotes the isodesmic fitting.
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Fig. S10 FT-IR spectra of (a) 1-Eu and (b) 1-Tb in sol (red line, MeOH) and gel (black line,
MeOH/water) states.
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Fig. S11 'H NMR spectra of the (a) sol (MeOH-d,) and (b) gel (MeOH-d4:D,0) states for 1-
Eu (6 mM) at 298 K.
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Fig. S12 '"H NMR spectra of the (a) sol (MeOH-dy4) and (b) gel (MeOH-d4:D,0) states for 1-Tb
(6 mM) at 298 K.
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Fig. S13 Rheological properties of supramolecular gels (1 wt%). Strain (frequency = 0.01
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Fig. S14 SEM image of yellow gel (1 wt%).
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S15 EDXS of 1-Eu gel showing the presence of Eu(IIl) in xerogel.

S16 EDXS of 1-Tb gel showing the presence of Tb(III) in xerogel.
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Fig. S17 EDXS of yellow emissive gel showing the presence of Tb(III) and Eu(IIl) in xerogel.

Fig. S18 EDXS of white emissive gel showing the presence of Tb(III) and Eu(IIl) in xerogel.
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