Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

#### **Electronic Supplementary Information (ESI) for**

## Crystal Structure, Magnetic Properties and Theoretical Study of a Bithiazolebis(oxamate)containing [Ni<sup>II</sup><sub>3</sub>] Helicate

Lucas H. G. Kalinke,<sup>†</sup> Mariany S. Silva,<sup>§</sup> Renato Rabelo,<sup>§,‡</sup> Ana K. Valdo,<sup>#</sup> Felipe T. Martins,<sup>§</sup> Nicolás Moliner,<sup>‡</sup> Miguel Julve,<sup>‡</sup> Francesc Lloret,<sup>‡</sup> Joan Cano<sup>\*,‡</sup> and Danielle Cangussu<sup>\*,§</sup>

<sup>†</sup>Instituto Federal de Goiás, IFG-Câmpus Anápolis, Anápolis, GO, 75131-457, Brazil

<sup>§</sup>Universidade Federal de Goiás, Instituto de Química, Goiânia, GO, 74001-970, Brazil

<sup>#</sup>Instituto Federal Goiano, IF Goiano – Campus Iporá, Iporá, GO, 76200-000, Brazil

<sup>‡</sup>Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), 46980 C/ Catedrático José Beltrán 2, 46980 Paterna (Valencia), Spain

#### **Table of contents**

| Infrared Spectra (Fig. S1)                                        | S2  |
|-------------------------------------------------------------------|-----|
| Thermogravimetric Analysis (Fig. S2)                              | S3  |
| Powder X-Ray diffractograms (Fig. S3)                             | S4  |
| Crystallographic Data and Analysis (Tables S1-S4 and Figs. S4-S6) | S5  |
| Magnetic Data and Analysis (Tables S5, S6 and Figs. S7, S8)       | S12 |

### **Infrared Spectra**



Figure S1. FT-IR spectra of 1 (green), and  $H_2Et_2dabtzox$  proligand (black).

### Thermogravimetric Analysis



Figure S2. TGA profile of 1 (green) under  $N_2$  atmosphere. The inset shows the first derivative of the TGA curve.

### Powder X-Ray diffractograms



Figure S3. Experimental (green) powder X-ray diffractogram pattern and the calculated one (black) for 1.

# Crystallographic Data and Analysis

| Ni1—N1               | 2.053 (4) | Na1—O2v              | 2.382 (4) |
|----------------------|-----------|----------------------|-----------|
| Ni1—N4 <sup>i</sup>  | 2.041 (4) | Na1—O2 <sup>vi</sup> | 2.551 (5) |
| Ni1—N5               | 2.099 (4) | Na1—O8               | 2.329 (6) |
| Ni1—O1               | 2.082 (4) | Na1—O9               | 2.455 (5) |
| Ni1—O5 <sup>i</sup>  | 2.070 (4) | Na1—O3W              | 2.381 (6) |
| Ni1—07               | 2.069 (4) | Na2—O4 <sup>i</sup>  | 2.541 (5) |
| Ni2—N2               | 2.112 (4) | Na2—O5 <sup>i</sup>  | 2.494 (5) |
| Ni2—N2 <sup>i</sup>  | 2.112 (4) | Na2—O7 <sup>vi</sup> | 2.428 (5) |
| Ni2—N3               | 2.118 (4) | Na2—O8 <sup>vi</sup> | 2.939 (6) |
| Ni2—N3 <sup>i</sup>  | 2.118 (4) | Na2—O1W              | 2.400 (6) |
| Ni2—N6               | 2.141 (4) | Na2—O2W              | 2.328 (7) |
| Ni2—N6 <sup>i</sup>  | 2.141 (4) | Na2—O3W              | 2.607 (6) |
| Ni1i—N1 <sup>i</sup> | 2.053 (4) | Na3—O2 <sup>ii</sup> | 2.422 (5) |
| Ni1i—N4              | 2.041 (4) | Na3—O3 <sup>ii</sup> | 2.456 (4) |
| Ni1i—N5 <sup>i</sup> | 2.099 (4) | Na3—O4               | 2.343 (5) |
| Nili—Ol <sup>i</sup> | 2.082 (4) | Na3—O6               | 2.455 (5) |
| Nili—O5              | 2.070 (4) | Na3—O4W              | 2.324 (8) |
| Ni1i—O7 <sup>i</sup> | 2.069 (4) | Na3—O5W              | 2.473 (6) |

 Table S1. Selected bond lengths (A) for 1\*.

Table S2. Selected bond angles (deg) for 1

| N1—Ni1—N4 <sup>i</sup>               | 101.9 (2)   | 02 <sup>v</sup> —Na1—O8                | 126.9 (2)  |
|--------------------------------------|-------------|----------------------------------------|------------|
| N1—Ni1—N5                            | 102.1 (2)   | O2 <sup>v</sup> —Na1—O9                | 106.4 (2)  |
| N1—Ni1—O1                            | 78.7 (2)    | O2 <sup>v</sup> —Na1—O3W               | 128.8 (2)  |
| N1—Ni1—O5 <sup>i</sup>               | 169.3 (2)   | O2 <sup>vi</sup> —Na1—O8               | 102.7 (2)  |
| N1—Ni1—O7                            | 90.9 (2)    | O2 <sup>vi</sup> —Na1—O9               | 165.5 (2)  |
| N4 <sup>i</sup> —Ni1—N5              | 96.5 (2)    | O2 <sup>vi</sup> —Na1—O3W              | 91.2 (2)   |
| N4 <sup>i</sup> —Ni1—O1              | 90.8 (2)    | O8—Na1—O9                              | 69.0 (2)   |
| N4 <sup>i</sup> —Ni1—O5 <sup>i</sup> | 80.1 (2)    | O8—Na1—O3W                             | 103.2 (2)  |
| N4 <sup>i</sup> —Ni1—O7              | 167.1 (2)   | O9—Na1—O3W                             | 79.7 (2)   |
| N5—Ni1—O1                            | 172.3 (2)   | O4 <sup>i</sup> —Na2—O5 <sup>i</sup>   | 52.14 (13) |
| N5—Ni1—O5 <sup>i</sup>               | 88.0 (2)    | O4 <sup>i</sup> —Na2—O7 <sup>vi</sup>  | 114.9 (2)  |
| N5—Ni1—O7                            | 79.2 (2)    | O4 <sup>i</sup> —Na2—O8 <sup>vi</sup>  | 71.08 (14) |
| 01—Ni1—O5 <sup>i</sup>               | 90.8 (2)    | O4 <sup>i</sup> —Na2—O1W               | 144.7 (2)  |
| 01—Ni1—07                            | 93.1 (2)    | O4 <sup>i</sup> —Na2—O2W               | 85.4 (2)   |
| O5 <sup>i</sup> —Ni1—O7              | 87.5 (2)    | O4 <sup>i</sup> —Na2—O3W               | 92.7 (2)   |
| N2—Ni2—N3                            | 78.62 (16)  | O5 <sup>i</sup> —Na2—O7 <sup>vi</sup>  | 162.8 (2)  |
| N2—Ni2—N6                            | 92.90 (17)  | O5 <sup>i</sup> —Na2—O8 <sup>vi</sup>  | 122.9 (2)  |
| N2—Ni2—N2 <sup>i</sup>               | 95.2 (2)    | O5 <sup>i</sup> —Na2—O1W               | 92.6 (2)   |
| N2—Ni2—N3 <sup>i</sup>               | 96.25 (16)  | O5 <sup>i</sup> —Na2—O2W               | 90.9 (2)   |
| N2—Ni2—N6 <sup>i</sup>               | 168.80 (16) | O5 <sup>i</sup> —Na2—O3W               | 92.5 (2)   |
| N3—Ni2—N6                            | 92.94 (17)  | O7 <sup>vi</sup> —Na2—O8 <sup>vi</sup> | 47.84 (14) |
| N3—Ni2—N2 <sup>i</sup>               | 96.25 (16)  | O7 <sup>vi</sup> —Na2—O1W              | 99.9 (2)   |

| N3—Ni2—N3 <sup>i</sup>                             | 172.5 (2)   | O7 <sup>vi</sup> —Na2—O2W              | 99.6 (2)   |
|----------------------------------------------------|-------------|----------------------------------------|------------|
| N3—Ni2—N6 <sup>i</sup>                             | 92.81 (17)  | O7 <sup>vi</sup> —Na2—O3W              | 75.9 (2)   |
| N6—Ni2—N2 <sup>i</sup>                             | 168.81 (16) | O8 <sup>vi</sup> —Na2—O1W              | 143.6 (2)  |
| N6—Ni2—N3 <sup>i</sup>                             | 92.81 (17)  | O8 <sup>vi</sup> —Na2—O2W              | 77.8 (2)   |
| N6—Ni2—N6 <sup>i</sup>                             | 80.3 (2)    | O8 <sup>vi</sup> —Na2—O3W              | 96.0 (2)   |
| N2i—Ni2—N3 <sup>i</sup>                            | 78.62 (16)  | O1W—Na2—O2W                            | 95.2 (2)   |
| N2 <sup>i</sup> —Ni2—N6 <sup>i</sup>               | 92.90 (17)  | O1W—Na2—O3W                            | 89.7 (2)   |
| N3 <sup>i</sup> —Ni2—N6 <sup>i</sup>               | 92.95 (17)  | O2W—Na2—O3W                            | 173.9 (2)  |
| N1 <sup>i</sup> —Ni1 <sup>i</sup> —N4              | 101.9 (2)   | O2 <sup>ii</sup> —Na3—O3 <sup>ii</sup> | 69.11 (14) |
| N1 <sup>i</sup> —Ni1 <sup>i</sup> —N5              | 102.1 (2)   | O2 <sup>ii</sup> —Na3—O4               | 117.9 (2)  |
| N1 <sup>i</sup> —Ni1 <sup>i</sup> —O1 <sup>i</sup> | 78.7 (2)    | O2 <sup>ii</sup> —Na3—O6               | 172.0 (2)  |
| N1 <sup>i</sup> —Ni1 <sup>i</sup> —O5              | 169.3 (2)   | O2 <sup>ii</sup> —Na3—O4W              | 89.3 (3)   |
| N1 <sup>i</sup> —Ni1 <sup>i</sup> —O7 <sup>i</sup> | 90.9 (2)    | O2 <sup>ii</sup> —Na3—O5W              | 84.6 (2)   |
| N4—Ni1 <sup>i</sup> —N5 <sup>i</sup>               | 96.5 (2)    | O3 <sup>ii</sup> —Na3—O4               | 90.5 (2)   |
| N4—Ni1 <sup>i</sup> —O1 <sup>i</sup>               | 90.8 (2)    | O3 <sup>ii</sup> —Na3—O6               | 112.0 (2)  |
| N4—Ni1 <sup>i</sup> —O5                            | 80.1 (2)    | O3 <sup>ii</sup> —Na3—O4W              | 95.9 (3)   |
| N4—Ni1 <sup>i</sup> —O7 <sup>i</sup>               | 167.1 (2)   | O3 <sup>ii</sup> —Na3—O5W              | 141.4 (2)  |
| N5 <sup>i</sup> —Ni1 <sup>i</sup> —O1 <sup>i</sup> | 172.3 (2)   | O4—Na3—O6                              | 70.1 (2)   |
| N5 <sup>i</sup> —Ni1 <sup>i</sup> —O5              | 88.0 (2)    | O4—Na3—O4W                             | 152.4 (3)  |
| N5 <sup>i</sup> —Ni1 <sup>i</sup> —O7 <sup>i</sup> | 79.2 (2)    | O4—Na3—O5W                             | 77.0 (2)   |
| O1 <sup>i</sup> —Ni1 <sup>i</sup> —O5              | 90.8 (2)    | O6—Na3—O4W                             | 82.7 (3)   |
| O1 <sup>i</sup> —Ni1 <sup>i</sup> —O7 <sup>i</sup> | 93.1 (2)    | O6—Na3—O5W                             | 98.0 (2)   |
| O5—Ni1 <sup>i</sup> —O7 <sup>i</sup>               | 87.5 (2)    | O4W—Na3—O5W                            | 112.1 (3)  |

\*Symmetry code: (i) = 1-x, y,  $\frac{1}{2}$ -z; (ii) = 1-x, y-1,  $\frac{1}{2}$ -z; (v) = x, 1-y,  $\frac{1}{2}$ +z; (vi) =  $\frac{1}{2}$ -x, y- $\frac{1}{2}$ ,  $\frac{1}{2}$ -z.

| D-A groups/molecule | 1                                     |      |      |          |     |
|---------------------|---------------------------------------|------|------|----------|-----|
| water-oxamate       | O1W-H1W <sup></sup> O8                | 0.99 | 2.00 | 2.945(7) | 158 |
| water-oxamate       | O1W-H2W <sup></sup> O3 <sup>vi</sup>  | 1.00 | 2.01 | 2.899(7) | 148 |
|                     |                                       |      |      |          |     |
| water-water         | O2W-H3W <sup></sup> O5W <sup>x</sup>  | 0.99 | 2.02 | 2.840(9) | 138 |
| water-oxamate       | O2W-H4W <sup></sup> O6 <sup>x</sup>   | 1.00 | 1.91 | 2.904(7) | 172 |
|                     |                                       |      |      |          |     |
| water-oxamate       | O3W-H5W <sup></sup> O1 <sup>vi</sup>  | 0.99 | 1.98 | 2.945(7) | 163 |
| water-water         | O3W-H6W <sup></sup> O1W <sup>vi</sup> | 0.99 | 2.00 | 2.971(8) | 168 |
|                     |                                       |      |      |          |     |
| water-oxamate       | O4W-H7W <sup></sup> S3 <sup>ix</sup>  | 0.85 | 2.77 | 3.52()   | 148 |
| water-oxamate       | O4W-H8W <sup></sup> O9 <sup>ix</sup>  | 0.85 | 2.29 | 2.83()   | 122 |
|                     |                                       |      |      |          |     |
| water-oxamate       | O5W-H9WO1                             | 0.99 | 1.90 | 2.782(6) | 146 |
| water-oxamate       | O5W-H10W <sup></sup> O8 <sup>ix</sup> | 0.85 | 2.18 | 3.001(8) | 163 |
|                     |                                       |      |      |          |     |

Table S3. Metrics for the hydrogen bonds in 1 (D and A state for donor and acceptor atoms, respectively).

\*Symmetry code: (vi) =  $\frac{1}{2}$ -x,  $\frac{y}{2}$ -z; (ix) = 1-x, -y, 1-z; (x) = x- $\frac{1}{2}$ ,  $\frac{1}{2}$ -y, z- $\frac{1}{2}$ .



**Figure S4.** Perspective views of **1** (a) and **2** (b) showing the complete coordination sphere for the involved metal ions. All non-hydrogen atoms were drawn at the 50% probability level and the hydrogen atoms were omitted for clarity [Symmetry code: **1** (i) = 1-*x*, *y*, <sup>1</sup>/<sub>2</sub>-*z*; (ii) = 1-*x*, *y*-1, <sup>1</sup>/<sub>2</sub>-*z*; (iii) = <sup>1</sup>/<sub>2</sub>+*x*, *y*-<sup>1</sup>/<sub>2</sub>, *z*; (iv) = 1-*x*, 1-*y*, *z*; (v) = *x*, 1-*y*, 1/<sub>2</sub>+*z*; (vi) = <sup>1</sup>/<sub>2</sub>-*x*, *y*-<sup>1</sup>/<sub>2</sub>, <sup>1</sup>/<sub>2</sub>-*z*; (vii) = *x*, *y*-1, *z*. **2** (i) = *x*, 1+*y*, *z*; (ii) = 1-*x*, -*y*, 1-*z*; (iii) = <sup>1</sup>/<sub>2</sub>+*x*, 1.5-*y*, *z*-<sup>1</sup>/<sub>2</sub>; (iv) = 1.5-*x*, 1/<sub>2</sub>+*y*, 1/<sub>2</sub>-*z*; (v) = 1-*x*, 1-*y*, 1-*z*; (vi) = *x*-<sup>1</sup>/<sub>2</sub>, 1/<sub>2</sub>-*y*, 1/<sub>2</sub>-*z*; (vii) = 1.5-*x*, *y*-<sup>1</sup>/<sub>2</sub>, 1/<sub>2</sub>-*z*; (vii) = 1.5-*x*, 1/<sub>2</sub>+*y*, 1.5-*z*].



**Figure S5.** Coordination polyhedra of Ni<sup>II</sup> (top) and Co<sup>II</sup> (bottom) ions in **1** and **2**, respectively [Symmetry code (i) = 1-x, *y*,  $\frac{1}{2}-z$ ].

**Table S4.** Analyses of the coordination geometry for each  $M^{II}$  ion in the structures of 1 (M = Ni) and 2 (M = Co) in The SHAPE program<sup>1</sup> was used to calculate the deviation parameter in relation to each idealized coordinated geometry.

| Deviation parameters calculated with SHAPE                                  |        |        |        |        |        |  |  |
|-----------------------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|
| SHAPE code <sup>a</sup> Ni1         Ni2         Co1         Co2         Co3 |        |        |        |        |        |  |  |
| OC-6                                                                        | 22.626 | 16.715 | 17.776 | 17.806 | 17.548 |  |  |
| TPR-6                                                                       | 26.684 | 22.656 | 22.351 | 23.411 | 23.388 |  |  |

<sup>a</sup>OC-6: O<sub>h</sub>, octahedron; TPR-6: D<sub>3h</sub>, trigonal prism.

<sup>&</sup>lt;sup>1</sup> Alvarez, S.; Alemany, P.; Casanova, D.; Cirrea, J.; Llunell, M.; Avnir, D. Shape Maps and Polyhedral Interconversion Paths in Transition Metal Chemistry. *Coord. Chem. Rev.* **2005**, *249*, 1693–1708



Figure S6. Perspective view of the crystal packing of 2 along the crystallographic b axis showing the methanol molecules of crystallization as space-filling representation.

#### **Magnetic Data and Analysis**

**Table S5.** Calculated spin configurations and their relative energies as a function of different  $J_i$  constants. The spin configuration used as a reference is the one with the maximum multiplicity generated from the parallel alignment of all local spin moments of the Ni<sup>II</sup> ions. Only the centers with an antiparallel (negative) alignment of their spin moment are noted. The notation in Scheme 2 is used (see main text). When the second-neighbor magnetic couplings are not considered,  $J_2$  terms should be removed.

| Spin configuration | S | $J_1{}^a$ | $J_2{}^{\mathrm{a}}$ | Relative energy <sup>a</sup> |
|--------------------|---|-----------|----------------------|------------------------------|
| {1}                | 1 | 3         | 3                    | +7.33                        |
| {2}                | 1 | 6         | 0                    | +17.34                       |
| {3}                | 1 | 3         | 3                    | +7.33                        |

<sup>a</sup>Values in cm<sup>-1</sup>.

| Ni1/Ni3               |                     |   |                  |                  | Ni                    | 2                   |   |                  |                  |
|-----------------------|---------------------|---|------------------|------------------|-----------------------|---------------------|---|------------------|------------------|
| State                 | Energy <sup>a</sup> | S | $D^{\mathrm{a}}$ | $E^{\mathrm{a}}$ | State                 | Energy <sup>a</sup> | S | $D^{\mathrm{a}}$ | $E^{\mathrm{a}}$ |
| $D_{\rm SS}$          |                     | 1 | +0.035           | +0.009           | D <sub>SS</sub>       |                     | 1 | -0.011           | -0.001           |
| $D_{\mathrm{T}}$      |                     | 1 | -4.473           | -0.549           | $D_{\mathrm{T}}$      |                     | 1 | +1.649           | +0.017           |
| $D_{\rm S}$           |                     | 0 | +0.678           | -0.090           | $D_{\rm S}$           |                     | 0 | -0.187           | +0.035           |
| $T_1$                 | 10071.8             | 1 | -36.330          | +2.596           | $T_1$                 | 10429.0             | 1 | +20.183          | -20.233          |
| $T_2$                 | 10240.1             | 1 | +20.351          | -20.377          | T <sub>2</sub>        | 12916.7             | 1 | +20.358          | +20.304          |
| $T_3$                 | 10673.4             | 1 | +11.519          | +17.252          | T <sub>3</sub>        | 12974.9             | 1 | -38.894          | -0.056           |
| $T_4$                 | 16655.8             | 1 | +0.003           | -0.016           | $T_4$                 | 19759.1             | 1 | +0.002           | +0.002           |
| $T_5$                 | 17063.5             | 1 | -0.017           | -0.000           | <b>T</b> <sub>5</sub> | 20006.7             | 1 | +0.000           | +0.000           |
| $T_6$                 | 18010.1             | 1 | +0.003           | -0.003           | T <sub>6</sub>        | 21153.7             | 1 | -0.000           | -0.000           |
| $T_7$                 | 27390.5             | 1 | +0.000           | -0.000           | T <sub>7</sub>        | 30681.7             | 1 | -0.000           | -0.000           |
| $T_8$                 | 28717.6             | 1 | +0.000           | -0.001           | T <sub>8</sub>        | 30968.9             | 1 | +0.000           | +0.000           |
| <b>T</b> 9            | 29102.8             | 1 | -0.002           | +0.000           | Т9                    | 31962.6             | 1 | +0.000           | +0.000           |
| $\mathbf{S}_1$        | 16606.7             | 0 | -0.000           | -0.000           | <b>S</b> <sub>1</sub> | 16688.5             | 0 | -0.000           | +0.000           |
| $S_2$                 | 16565.8             | 0 | -0.000           | -0.000           | <b>S</b> <sub>2</sub> | 16689.9             | 0 | -0.000           | -0.000           |
| <b>S</b> <sub>3</sub> | 25924.9             | 0 | +14.350          | -0.044           | <b>S</b> <sub>3</sub> | 26864.9             | 0 | -6.965           | -6.961           |
| $S_4$                 | 26515.6             | 0 | -6.925           | +6.840           | S <sub>4</sub>        | 26948.6             | 0 | -6.861           | +6.950           |
| $S_5$                 | 26888.2             | 0 | -6.747           | -6.706           | <b>S</b> <sub>5</sub> | 27119.1             | 0 | +13.639          | +0.046           |

**Table S6.** Energy of the calculated quartet (Q<sub>i</sub>) and triplet (D<sub>i</sub>) excited states and their contributions to the *D* and *E* values for **1** and **2** obtained from CASSCF/NEVPT2 calculations.  $D_{SS}$  is the spin-spin contribution to the axial *zfs* parameter, and  $D_T$  and  $D_S$  stand for the sum of spin-orbit contributions coming from quartet and doublet excited states

<sup>a</sup>Values in cm<sup>-1</sup>.



**Figure S7.** Temperature dependence of  $\chi_M T$  for **2**. The solid lines are the best-fit curves The insets show the *M vs H*/*T* plot in the temperature range of 2.0–10 K (from blue to red colours). The solid lines are only eye-guides. Originally published by Kalinke *et al.* (reference 24 from the main text).



**Figure S8.** Relative orientations of the experimental coordination sphere geometry for the Ni<sup>II</sup> sites in 1, their calculated local (x = cyan, y = green, z = magenta) and global (x = blue, y = dark green, z = red) *D* tensors. The global *D* tensor was calculated for the *S* = 3 ground spin state. Color code: light blue (nickel), dark blue ( nitrogen); red (oxygen), black (carbon), and yellow (sulphur) Hydrogen atoms were hidden for clarity.