Supplementary Information

Enhanced Thermostability of *Streptomyces mobaraenesis* Transglutaminase via Computation-aided Site-directed Mutations and Structural Analysis

Yongzhen Li¹, Banghao Wu¹, Yumeng Zhang¹,

Lanxuan Liu², Linquan Bai¹, Ting Shi^{1,*}

¹State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China ²Digital Innovation of AI, WuXi Biologics, Shanghai 201400, China

*Corresponding author:

Ting Shi, Email: tshi@sjtu.edu.cn.

1	ATGGGCAGCAGC	CATCATCATCAT	CATCAC AGCAGC	GGCCTGGTGCCG
		нннн	нн	
49	CGCGGCAGCCAT	ATGGACTCCGAC	GAGCGGGTGACT	CCTCCCGCCGAG
97	CCGCTCGACCGG	ATGCCCGACCCG	TACCGGCCCTCG	TACGGCAGGGCC
21				
145	GAGACGATCGTC	AACAACTACATA	CGCAAGTGGCAG	CAGGTCTACAGC
193	CACCGCGACGGC	AGGAAACAGCAG	ATGACCGAGGAA	CAGCGGGAGTGG
241	H CTGTCCTACGGT	TGCGTCGGTGTC	ACCTGGGTCAAC	TCGGGCCAGTAT
289	CCGACGAACAGG	CTGGCTTTCGCG	TTCTTCGACGAG	Q GACAAGTACAAG
337	AACGAGCTGAAG	AACGGCAGGCCC	CGGTCCGGCGAA	ACGCGGGGCGGAG
385	TTCGAGGGGCGC	GTCGCCAAGGAC	AGCTTCGACGAG	GCGAAGGGGTTC
433	CAGCGGGGCGCGT	GACGTGGCGTCC	GTCATGAACAAG	GCCCTGGAGAAC
481	GCCCACGACGAG	GGGGCGTACCTC	GACAACCTCAAG	AAGGAGCTGGCG
529	AACGGCAACGAC	GCCCTGCGGAAC	GAGGATGCCCGC	TCGCCCTTCTAC
577	TCGGCGCTGCGG	AACACGCCGTCC	TTCAAGGACCGC	AACGGCGGCAAT
625	CACGACCCGTCC	AAGATGAAGGCC	GTCATCTACTCG	AAGCACTTCTGG
673	AGCGGCCAGGAC	CGGTCGGGCTCC	AAGTACGGCGAC	CCGGAGGCCTTC
721	CGCCCCGACCGC	GGCACCGGCCTG	GTCGACATGTCG	AGGGACAGGAAC
769	ATTCCGCGCAGC	CCCACCAGCCCC	GGCGAGAGTTTC	GTCAATTTCGAC
817	TACGGCTGGTTC	GGAGCGCAGACG	GAAGCGGACGCC	GACAAGACCGTA
865	TGGACCCACGGC	AACCACTACCAC	GCGCCCAATGGC	AGCCTGGGTGCC
913	ATGCACGTGTAC	GAGAGCAAGTTC	CGCAACTGGTCC	GACGGTTACTCG
961	GACTTCGACCGC	GGAGCCTACGTG	GTCACGTTCGTC	CCCAAGAGCTGG
1009	AACACCGCCCCC	GACAAGGTGACA	CAGGGCTGGCCG	TGA *

Fig. S1 The sequence analysis of smTG. Numbers (left side): the number of nucleotide sequences; Single underline: the region of mature smTG; Gray background: the mutation sites of the wild-type smTG; Box: His-tag.

Fig. S2 Schematic diagram of plasmid pET28a/TGwt.

Fig. S3 SDS-PAGE analysis of the TGm1 and its variants purified by affinity chromatography. The Mu-TGase and mutants were intracellularly expressed in *E. coli* BL21 (DE3) pGro7 using pET-28a/TGwt and its derivatives.

Fig. S4 Model performance on S^{sym} dataset. (A) Model performance on predicting $\Delta\Delta G$ for direct mutations; (B) Model performance on predicting $\Delta\Delta G$ for reverse mutations; (C) Direct versus reverse $\Delta\Delta G$ values of all the mutations in the test set. The color of points in A and B represents the difference between experimental and predicted $\Delta\Delta G$ (Red: $\Delta\Delta G_{exp} > \Delta\Delta G_{pred}$, Blue: $\Delta\Delta G_{exp} < \Delta\Delta G_{pred}$).

Fig. S5 Model predicts the mutation effects on protein stability well in p53 protein and myoglobin. A, D. Model performance on predicting $\Delta\Delta G$ for direct mutations; B, E. Model performance on predicting $\Delta\Delta G$ for reverse mutations; C, F. Direct versus reverse $\Delta\Delta G$ values of all the mutations in the test set.

Fig. S6 The crystal structure of smTG (PDB ID: 6gmg). The residue regions used for prediction are shown in different colors. Loop1 contains residues 42-54 in purple, loop2 contains residues 72-87 in green, and loop3 contains residues 274-289 in cyan.

Fig. S7 Statistics of the ring-to-ring distance between F74 and P177. More than 75% of the time in 100 ns is within 5 Å distance.

Fig. S8 Statistical results of side-chain distances for F85 and W87. More than 66.1% of the time in 100 ns is within 5 Å distance.

Fig. S9 Docking poses of CBZ-Gln-Gly in different systems.

Fig. S10 RMSF and RMSD of wild-type and mutant smTG with substrate.

Table. S	1	Primers	used	in	this	study.	
----------	---	---------	------	----	------	--------	--

Primers	Sequences (5'-3')	Mutations
MTGase-F	CCGGAATTCTCACGGCCAGCCCTGTGTCAC	
MTGase-R	CGCCATATGGACTCCGACGAGCGGGTGAC	
Mutation1-F	GCAGGAAACAGCAGATGACC <u>AAG</u> GAACAG CGGGAGTGGCTGTC	E54K
Mutation2-F	GCAGGAAACAGCAGATGACC <u>CGC</u> GAACAG CGGGAGTGGCTGTC	E54R
Mutation1-R	GGTCATCTGCTGTTTCCTGCCGTCGCGGTG GCTGTAGACC	E54K, E54R
Mutation3-F	TCACCTGGGTCAACTCGGGC <u>TAC</u> TATCCG ACGAACAGGCTGGC	Q74Y
Mutation4-F	TCACCTGGGTCAACTCGGGC <u>TTC</u> TATCCG ACGAACAGGCTGGC	Q74F
Mutation2-R	GCCCGAGTTGACCCAGGTGACACCGACG CAACCGTAGGAC	Q74Y, Q74F
Mutation5-F	AGTGGCAGCAGGTCTACAGC <u>TGC</u> CGCGA CGGCAGGAAACAGCA	H44C
Mutation6-F	AGTGGCAGCAGGTCTACAGC <u>ATA</u> CGCGA CGGCAGGAAACAGCA	H44I
Mutation3-R	GCTGTAGACCTGCTGCCACTTGCGTATGT AGTTGTTGACG	H44C, H44I
Mutation7-F	TGGCTTTCGCGTTCTTCGAC <u>TGG</u> GACAAG TACAAGAACGAGCT	E87W
Mutation8-F	TGGCTTTCGCGTTCTTCGAC <u>TTC</u> GACAAG TACAAGAACGAGCT	E87F
Mutation4-R	GTCGAAGAACGCGAAAGCCAGCCTGTTC GTCGGATACTGG	E87F, E87W

The mutation sites were underlined.

GNN Operator	σ_{dir}	r _{dir}	σ_{rev}	r _{rev}
GCN	0.53	0.54	1.40	1.40
GIN	0.58	0.57	1.37	1.37
GAT	0.60	0.60	1.27	1.27
Neighborhood radius (Å)	σ_{dir}	r _{dir}	σ_{rev}	r _{rev}
10	0.59	0.59	1.30	1.30
12	0.60	0.60	1.27	1.27
14	0.55	0.54	1.33	1.33
16	0.52	0.53	1.38	1.37
Feature encoding	σ_{dir}	r _{dir}	σ_{rev}	r _{rev}
w/o Evolutionary	0.55	0.56	1.34	1.33
w/o Energy	0.36	0.35	1.64	1.65
w/o Amino acid	0.54	0.54	1.34	1.34
All	0.60	0.60	1.27	1.27

Table. S2 The ablation study on the selection of the GNN operator, radius of mutationneighborhood, and node features.

Method	σ_{dir}	<i>r_{dir}</i>	σ_{rev}	<i>r</i> _{rev}	r _{dir-rev}	$\langle \delta \rangle$
FoldX	1.56	0.63	2.13	0.39	-0.38	-0.47
Rosetta	2.31	0.69	2.61	0.43	-0.41	-0.69
CUPSAT	1.71	0.39	2.88	0.05	-0.54	-0.72
PoPMuSiC v2.1	1.21	0.63	2.18	0.25	-0.29	-0.71
STRUM	1.05	0.75	2.51	-0.15	0.34	-0.87
MAESTRO	1.36	0.52	2.09	0.32	-0.34	-0.58
mCSM	1.23	0.61	2.43	0.14	-0.26	-0.91
MUPRO	0.94	0.79	2.51	0.07	-0.02	-0.97
INPS	0.51	0.50	1.42	1.44	-0.99	-0.04
I-Mutant 3.0	1.23	0.62	2.32	-0.04	0.02	-0.68
DDGun3D	1.42	0.56	1.46	0.53	-0.99	-0.02
iSTABLE	1.10	0.72	2.28	-0.08	0.02	-0.68
DUET	1.20	0.63	2.38	0.13	-0.21	-0.84
NeEMO	1.08	0.72	2.35	0.02	0.09	-0.60
ThermoNet	1.56	0.47	1.55	0.47	-0.96	-0.01
ACDC-NN	1.45	0.57	1.45	0.57	-1.00	-0.00
Ours	1.27	0.60	1.27	0.60	-1.00	-0.02

Table. S3 Performance comparison on balanced test set S^{sym}.

 σ_{dir} and r_{dir} are the root mean square error and the Pearson correlation coefficient between the predicted and experimental $\Delta\Delta G$ values for the direct mutations. σ_{rev} and r_{rev} are the root mean square error and the Pearson correlation coefficient for the reverse mutations. The antisymmetry between direct and reverse mutations is assessed using the correlation coefficient $r_{dir-rev}$ and the average bias $\langle \delta \rangle$. A perfectly unbiased predictor should have $r_{dir-rev} = -1$ and $\langle \delta \rangle = 0$ kcal/mol.

Method	σ_{dir}	<i>r_{dir}</i>	σ_{rev}	r _{rev}	r _{dir-rev}	$\langle \delta \rangle$
ThermoNet	2.01	0.45	1.92	0.56	-0.93	-0.04
ACDC-NN	1.69	0.61	1.69	0.61	-1.00	-0.00
Ours	1.72	0.53	1.71	0.53	-1.00	-0.02

Table. S4 Prediction results on p53 protein.

The TP53 tumor suppressor gene encodes the p53 transcription factor that is mutated in about 45% of all human cancers. Single amino acid substitutions in p53 often affect DNA binding or disrupt the conformation and stability of p53 protein.¹ The TP53 tumor suppressor gene encodes the p53 transcription factor that is mutated in about 45% of all human cancers. Single amino acid substitutions in p53 often affect DNA binding or disrupt the conformation and stability of p53 protein. With the same data-processing pipeline, the model capacity of estimating the thermodynamic effects derived from mutations in p53. The results were compared with ThermoNet and ACDC-NN.

Method	σ_{dir}	r _{dir}	σ_{rev}	r _{rev}	r _{dir-rev}	$\langle \delta \rangle$
ThermoNet	1.16	0.38	1.18	0.37	-0.97	-0.02
ACDC-NN	0.89	0.58	0.89	0.58	-1.00	-0.00
Ours	0.83	0.61	0.82	0.62	-1.00	-0.05

 Table. S5 Prediction results on myoglobin.

Myoglobin regulates cellular oxygen concentration in cardiac myocytes and oxidative skeletal muscle fibers by reversible binding of oxygen.² The myoglobin dataset includes 134 mutations throughout the chain (PDB ID: 1BZ6). With the same data-processing pipeline, the model capacity of estimating the thermodynamic effects derived from mutations in myoglobin protein was examined. The results were compared with ThermoNet and ACDC-NN.

PDB	Position	WT	MUT	ΔΔG	PDB	Position	WT	MUT	ΔΔG
				(kcal/mol)					(kcal/mol)
1iu4A	43	S	F	-0.87	1iu4A	74	Q	Ι	-0.92
1iu4A	44	Η	V	-0.95	1iu4A	74	Q	С	-0.84
1iu4A	44	Η	С	-0.75	1iu4A	74	Q	L	-0.8
1iu4A	44	Η	Ι	-0.73	1iu4A	74	Q	Μ	-0.63
1iu4A	44	Η	F	-0.72	1iu4A	74	Q	Т	-0.61
1iu4A	44	Η	Y	-0.72	1iu4A	74	Q	V	-0.59
1iu4A	44	Η	W	-0.66	1iu4A	76	Р	Y	-1.23
1iu4A	44	Η	Т	-0.65	1iu4A	78	Ν	Μ	-1.19
1iu4A	44	Η	Р	-0.5	1iu4A	78	Ν	С	-0.76
1iu4A	48	R	Р	-0.98	1iu4A	79	R	Ι	-0.86
1iu4A	49	Κ	Y	-0.57	1iu4A	79	R	Т	-0.81
1iu4A	49	Κ	F	-0.51	1iu4A	79	R	V	-0.73
1iu4A	49	Κ	Р	-0.51	1iu4A	83	А	W	-0.66
1iu4A	54	Е	Κ	-0.87	1iu4A	84	S	С	-0.9
1iu4A	54	Е	L	-0.81	1iu4A	84	S	F	-0.88
1iu4A	54	Е	R	-0.62	1iu4A	84	S	Y	-0.81
1iu4A	54	Е	Ι	-0.6	1iu4A	84	S	W	-0.55
1iu4A	54	Е	С	-0.59	1iu4A	84	S	Ι	-0.54
1iu4A	54	Е	Р	-0.58	1iu4A	85	F	W	-0.65
1iu4A	54	Е	Т	-0.58	1iu4A	86	D	L	-0.75
1iu4A	54	Е	F	-0.56	1iu4A	86	D	Ι	-0.57
1iu4A	54	Е	Y	-0.55	1iu4A	87	E	Y	-2.03
1iu4A	72	S	L	-0.71	1iu4A	87	E	F	-1.79
1iu4A	73	G	Μ	-0.69	1iu4A	87	E	W	-1.18
1iu4A	73	G	С	-0.65	1iu4A	87	E	L	-0.91
1iu4A	74	Q	Y	-1.25	1iu4A	87	E	Н	-0.75
1iu4A	74	Q	F	-1.13	1iu4A	87	Е	С	-0.7
1iu4A	74	Q	Р	-1.1	1iu4A	87	E	V	-0.52

Table. S6 The prediction of mutations with $\Delta\Delta G$ value below -0.5 kcal/mol.

Incubation time at 60 °C	0 min	10 min	20 min	30 min
TGase (U/mg)	27.68	1.34	0.40	0.17
H44C (U/mg)	25.64	2.01	0.92	0.21
H44I (U/mg)	32.81	2.17	0.41	0.26
E54K (U/mg)	27.50	0.40	0.21	0.17
E54R (U/mg)	31.97	1.16	0.25	0.11
Q74Y (U/mg)	30.44	0.78	0.29	0.31
Q74F (U/mg)	27.80	1.84	3.07	0.62
E87W (U/mg)	21.93	1.08	2.33	0.45
E87F (U/mg)	28.63	1.16	0.71	0.43

Table. S7 Residual enzyme activities of wide-type and mutant smTG with different incubation time at 60 °C.

Sys	Acceptor	Donor	Frac	Sys	Acceptor	Donor	Frac
	E58@O	S61@OG	0.9741		E58@O	S61@OG	0.9652
	S293@O	W272@N	0.9411		S293@O	W272@N	0.9329
	A267@O	T270@OG1	0.9000		N78@OD1	Y198@OH	0.9051
	Y198@O	V311@N	0.8963		Y34@O	W38@N	0.8841
	N78@O	Y198@OH	0.8810		N33@OD1	D18@N	0.8797
	Y34@O	W38@N	0.8737		V112@O	S116@OG	0.8748
	V271@O	Q262@NE2	0.8723		Y198@O	V311@N	0.8686
	N33@O	D18@N	0.8678		V271@O	Q262@NE2	0.8674
E	D306@O	R307@NH1	0.8618	4F	D306@O	R307@NH1	0.8593
1	T29@O	V290@N	0.8598	67	D306@OD2	S204@OG	0.8470
	Y310@O	F82@N	0.8564		D255@O	HIP201@N	0.8387
	V112@O	S116@OG	0.8487		HID274@O	Y291@N	0.8386
	D306@O	S204@N	0.8312		T29@O	V290@N	0.8357
	D306@O	S204@OG	0.8306		Y310@O	F82@N	0.8355
	I315@O	K194@N	0.8216		R192@O	K317@N	0.8264
					Q39@OE1	M52@N	0.8154
					D306@OD1	S204@N	0.8153
					A173@O	T177@OG1	0.8024
	E58@O	S61@OG	0.9830		E58@O	S61@OG	0.9842
	S293@O	W272@N	0.9189		S293@O	W272@N	0.9337
	N78@OD1	Y198@OH	0.9088		N78@OD1	Y198@OH	0.8932
	Y198@O	V311@N	0.8856		Y198@O	V311@N	0.8875
	V271@O	Q262@NE2	0.8852		Y34@O	W38@N	0.8740
	N33@OD1	D18@N	0.8794		N33@OD1	D18@N	0.8721
	Y34@O	W38@N	0.8753		V271@O	Q262@NE2	0.8634
	A267@O	T270@OG1	0.8713		D306@O	R307@NH1	0.8621
ب ب	D306@O	R307@NH1	0.8604	8	Y310@O	F82@N	0.8598
144	V112@O	S116@OG	0.8539	87	V112@O	S116@OG	0.8559
	Y310@O	F82@N	0.8482	Ĩ	D306@OD2	S204@OG	0.8446
	T29@O	V290@N	0.8349		D306@OD1	S204@N	0.8406
	D255@O	HIP201@N	0.8341		HID274@O	Y291@N	0.8398
	R192@O	K317@N	0.8298		T29@O	V290@N	0.8349
	T68@O	S72@OG	0.8248		D255@O	HIP201@N	0.8267
	D306@OD2	S204@OG	0.8234		R192@O	K317@N	0.8244
	D306@OD1	S204@N	0.8230		I315@O	K194@N	0.8058
	Q39@OE1	M52@N	0.8225		Q39@OE1	M52@N	0.8030
	I315@O	K194@N	0.8112				

 Table. S8 Hydrogen bond interactions more than 80%.

Sys	State	Res	Para	Anti	3-10 Helix	Alpha	Pi	Turn	Bend
		177	0	0	0.1752	0.5765	0	0.1935	0.0548
	DCCD1	178	0	0	0.1988	0.5765	0	0.2206	0.0041
	DSSPI	179	0	0	0.1988	0.5765	0	0.1888	0.0360
		180	0	0	0.0917	0.5765	0	0.1929	0.1389
		177	0	0	0.1923	0.5692	0	0.1929	0.0456
	נתפפת	178	0	0	0.2168	0.5692	0	0.2120	0.0020
	D55P2	179	0	0	0.2168	0.5692	0	0.1924	0.0216
WT		180	0	0	0.1013	0.5692	0	0.1900	0.1394
W I		177	0	0	0.2189	0.5328	0	0.2054	0.0429
		178	0	0	0.2407	0.5328	0	0.2240	0.0025
	DSSP5	179	0	0	0.2407	0.5328	0	0.1903	0.0363
		180	0	0	0.1166	0.5328	0	0.1970	0.1536
		177	0	0	0.1955	0.5595	0	0.1973	0.0478
	AVE	178	0	0	0.2188	0.5595	0	0.2189	0.0029
	AVE	179	0	0	0.2188	0.5595	0	0.1905	0.0313
		180	0	0	0.1032	0.5595	0	0.1933	0.1440
	DSSP1	177	0	0	0.1444	0.6749	0	0.1454	0.0353
		178	0	0	0.1612	0.6749	0	0.1627	0.0011
		179	0	0	0.1612	0.6749	0	0.1452	0.0186
		180	0	0	0.0631	0.6749	0	0.1558	0.1061
		177	0	0	0.1513	0.6501	0	0.1505	0.0481
	נתפפת	178	0	0	0.1755	0.6501	0	0.1728	0.0015
	D55P2	179	0	0	0.1755	0.6501	0	0.1640	0.0103
074E		180	0	0	0.0773	0.6501	0	0.1741	0.0984
Q/4r		177	0	0	0.1433	0.6546	0	0.1581	0.0440
		178	0	0	0.1662	0.6546	0	0.1776	0.0017
	DSSP3	179	0	0	0.1662	0.6546	0	0.1697	0.0096
		180	0	0	0.0764	0.6546	0	0.1642	0.1048
		177	0	0	0.1463	0.6599	0	0.1513	0.0425
	AVE	178	0	0	0.1676	0.6599	0	0.1710	0.0014
	AVE	179	0	0	0.1676	0.6599	0	0.1596	0.0128
		180	0	0	0.0723	0.6599	0	0.1647	0.1031

Table. S9 DSSP analysis of wild protein and Q74F about residue 177,178,179,180.

System	MM-	GBSA(kca	l/mol)	Ave.	Std.err.of
System	MD1	MD2	MD3	(Sys)	mean
WT	-21.30	-19.30	-20.02	-20.21	0.83
H44C	-26.40	-26.90	-26.50	-26.60	0.22
Q74F	-21.14	-21.69	-20.96	-21.26	0.31
E87W	-17.50	-17.29	-16.08	-16.96	0.63

Table. S10 MM-GBSA in smTG and its mutants.

REFERENCES IN SUPPLEMENTARY INFORMATION

- Olivier, M.; Eeles, R.; Hollstein, M.; Khan, M. A.; Harris, C. C.; Hainaut, P. The IARC TP53 Database: New Online Mutation Analysis and Recommendations to Users. *Hum. Mutat.* 2002, *19* (6), 607–614.
- (2) Ordway, G. A.; Garry, D. J. Myoglobin: An Essential Hemoprotein in Striated Muscle. J. Exp. Biol. 2004, 207 (20), 3441–3446.