Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Efficient Charge Separation and Transportation Using 1D Iron-Sulfide@Titania Heterojunctions as Photoanode for Improved Interface Stability and Photoelectrochemical Activity

Noor Alam^a, Fazeelat Rehman^a, Manzar Sohail^a, Asad Mumtaz^{a,*}

^a Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan

Corresponding author:

Dr. Asad Mumtaz,

Assistant Professor,

Department of Chemistry,

School of Natural Sciences (SNS),

National University of Sciences & Technology (NUST), H-12, 44000, Islamabad, Pakistan

Mobile: +923325190321 | Office: +92 51 90855593

E-mail: asad_032@yahoo.com | asad.mumtaz@sns.nust.edu.pk

Figure S1. XRD of 50 SILAR cycles of FeS-FeS₂

Figure S1, indicates the presence of FeS and FeS₂ phases in the sample prepared at the substrate in bulk with 50 SILAR cycles. Briefly, FeS possesses 20 values of 38.03° , 60.83° , 65.86° , 69.06° , 76.10° which corresponds to (011), (110), (013), (313), and (004), while for FeS₂ the $2\theta = 25.01^{\circ}$, 27.95° , 34.34° , 35.94° , 39.86° and 57.18° corresponds to (110), (111), (200), (210), (211) and (311) respectively. After matching the 20 value of FeS-FeS₂ with FeS-FeS₂@TiO₂, it was observed that the peaks intensity decreased and little shifting in it has been occurred at the $2\theta = 38.03^{\circ}$, 76.10° which corresponds to (011), (004) planes as of FeS and $2\theta = 25.01$, 39.86° which corresponds to (110), (211) planes as of FeS₂ respectively, which confirms the successful deposition of FeS-FeS₂ at TiO₂ with low amount.

Figure S2. EDS spectrum of (a) 10-FeS-FeS₂@TiO₂ NTs (b) 15-FeS-FeS₂@TiO₂ NTs, (c) 10-FeS-FeS₂@TiO₂ NTs and (d) 15-FeS-FeS₂@TiO₂ NTs

Figure S3 AFM images showing surface roughness of (a) pure TiO_2 NTs (b) 10-FeS-FeS₂@TiO₂ NTs (c) 15-FeS-FeS₂@TiO₂ NTs

Figure S4 AFM images showing surface thickness of (a) pure TiO_2 NTs, (b) 10-FeS-FeS₂@TiO₂ NTs and (c) 15-FeS-FeS₂@TiO₂ NTs

Figure S5 AFM images showing topography of (a) pure TiO₂ NTs (b) 10-FeS-FeS₂@TiO₂ NTs (c) 15-FeS-FeS₂@TiO₂ NTs

Figure S6. (a) %STH curves (b) %STH Histogram of pure TiO₂ NTs, 05-FeS-FeS₂@TiO₂ NTs, 10-FeS-FeS₂@TiO₂ NTs and 15-FeS-FeS₂@TiO₂ NTs

Figure S7. Linear Sweep Voltammetry (I-V) curves in dark