Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

K₂S₂O₈-Mediated Direct C-H Functionalization to Synthesize

Quinoxalin-2(1*H*)-one Derivatives in Water

Hui Qin, Guo-Liang Wei, Xiao-Wei Zheng, Mei-Hua Bao, Yi-Wen Zhang, Ping

Huang

List of Contents

1.	General information	S2
2.	General procedure for the synthesis of starting materials	S2
3.	General procedure for the synthesis of 3a-3aq	S2-3
4.	The mechanistic studies	S3-6
5.	X-ray Structure and Data of 3m	S6-9
5.	Characterization of products	S9-20
6.	References	S20
7.	Copies of NMR Spectra	S21-50

1. General information

Unless stated otherwise, all reactions for preparing compound **3a-aj** were carried out under an air atmosphere. All reagents and solvents were of commercial quality and were used without further purification. Purification was carried out according to standard laboratory methods^[1]. All reactions were monitored by TLC analysis with silica gel-coated plates with fluorescent indicator UV254. ¹H and ¹³C NMR spectra were obtained on either a Bruker AV 400 at 400 MHz and 100 MHz, respectively. Chemical shifts are reported in ppm and coupling constants are reported in Hz with TMS at 0.0 ppm (¹H and ¹³C) and DMSO-*d*₆ referenced at 2.50 (¹H) and 39.5 (¹³C). Mass spectra were measured with an Orbitrap ExplorisTM 120 mass spectrometer using ESI ionization.

2. General procedure for the synthesis of starting materials^[2]

Glyoxylic acid (1.1 equiv.) was added into a suspension of o-arylenediamine (1.0 equiv.) in ethanol (1 mol/L). The reaction mixture was stirred and heated at reflux in an oil bath for 2 h, then at room temperature for 1 h until the reaction completed. The precipitated solid was filtered and washed with ethanol, then dried to give quinoxalinone **2**'. For alkylation, the corresponding alkyl halide (1.6 equiv.) was added to a suspension of quinoxalinone **2**' (1 equiv.) and potassium carbonate (1.2 equiv.) in DMF. The reaction mixture was stirred at room temperature overnight. When TLC analysis indicated that the quinoxalinone disappeared, the reaction mixture was washed with saturated solution of ammonium chloride, ethyl acetate and water. The organic layer was separated and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were dried with anhydrous MgSO₄, filtered and concentrated under reduced pressure. The resulting organic residue was purified by column chromatography over silica gel to afford the desired product **2**.

3. General procedure for the synthesis of target compounds

Different substituted quinoxalin-2-one 1 (0.2 mmol, 1.0 equiv.) and various oxindole 2 (0.24 mmol, 1.2 equiv.) was added into 2 ml water (H₂O) and was treated with $K_2S_2O_8$ (0.2 mmol, 1.0 equiv.) at 50°C under air atmosphere in a 10 mL thick-walled ground test tube. Then mixture was stirred until the reaction completed. The progress of the reaction was monitored by TLC. After that, the reaction mixture was centrifuged with 75% ethanol for three time to obtain precipitate which was further purified through preparative TLC plate to obtain the desired product **3**.

4. The mechanistic studies

- (a) Oxindole (1a, 0.2 mmol) and K₂S₂O₈ (0.4 mmol, 2.0 equiv.) were added to a 10 mL thick-walled ground test tube with a magnetic stirring bar, then the reaction solution was stirred at 50°C. No new product was detected via TLC plate.
- (b) 1-Methylquinoxalin-2-one (2a, 0.2 mmol, 1.2 equiv.) and K₂S₂O₈ (0.4 mmol, 2.0 equiv.) were added to a 10 mL thick-walled ground test tube with a magnetic stirring bar, then the reaction solution was stirred at 50°C until the reaction complete. No new product was detected via TLC plate.

- (c) Oxindole (1a, 0.2 mmol), 1-methylquinoxalin-2-one (2a, 0.24 mmol, 1.2 equiv.), K₂S₂O₈ (0.4 mmol, 2.0 equiv.) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 0.4 mmol, 2.0 equiv.) were added to a 10 mL thick-walled ground test tube with a magnetic stirring bar, then the reaction mixture was stirred at rt until the reaction completed. the desired product 3a was obtained in 19% yield. Furthermore, two free radical-trapping adducts 5 and 6 were detected by HRMS from the reaction solution, indicating that the reaction mechanism might be a radical reaction pathway.
- (d) Oxindole (1a, 0.2 mmol), 1-methylquinoxalin-2-one (2a, 0.24 mmol, 1.2 equiv.), K₂S₂O₈ (0.4 mmol, 2.0 equiv.) and Butylated hydroxytoluene (BHT, 0.4 mmol, 2.0 equiv.) were added to a 10 mL thick-walled ground test tube with a magnetic stirring bar, then the reaction mixture was stirred at rt until the reaction completed. the desired product 3a was obtained in 23% yield. Furthermore, two free radical-trapping adducts 7 and 8 were detected by HRMS from the reaction solution, indicating that the reaction mechanism might be a radical reaction pathway.

4.2 The HRMS spectra of compounds 5-8 in first set of control experiments

Compound 6: HRMS (m/z) [ESI]: calculated for $C_{17}H_{24}O_2N_2Na^+$ [M+Na] ⁺: 311.1730, found 311.17090.

Compound 6: HRMS (m/z) [ESI]: calculated for $C_{26}H_{33}O_3N_4$ ⁺ [M+H] ⁺: 449.2547, found 449.25131.

Compound 7: HRMS (m/z) [ESI]: calculated for C₂₃H₂₉O₂NNa ⁺ [M+Na] ⁺: 374.2091, found 374.20578.

Compound 8: HRMS (m/z) [ESI]: calculated for $C_{32}H_{38}O_3N_3$ ⁺ [M+H] ⁺: 512.2908, found 512.28750.

5. X-ray Structure and Data of 3m

cu_231217LU_LGPZ305784_0m

Table 1 Crystal data and structure refinement for					
Identification code	cu 231217LU LGPZ305784 0m				
Empirical formula	C ₁₇ H ₁₂ N ₂ O ₃				
Formula weight	292.29				
Temperature/K	193.00				
Crystal system	orthorhombic				
Space group	P212121				
a/Å	4.7263(17)				
b/Å	15.850(6)				
c/Å	17.689(7)				
α/°	90				
β/°	90				
γ/°	90				
Volume/Å ³	1325.1(9)				
Z	4				
ρ _{calc} g/cm ³	1.465				
µ/mm ⁻¹	0.843				
F(000)	608.0				
Crystal size/mm ³	0.13 × 0.11 × 0.09				
Radiation	CuKα (λ = 1.54178)				
20 range for data collection/	°7.488 to 158.524				
Index ranges	-4 ≤ h ≤ 5, -16 ≤ k ≤ 18, -20 ≤ l ≤ 21				
Reflections collected	12691				
Independent reflections	2499 [R _{int} = 0.0972, R _{sigma} = 0.0727]				
Data/restraints/parameters	2499/0/201				
Goodness-of-fit on F ²	1.038				
Final R indexes [I>=2o (I)]	R ₁ = 0.0619, wR ₂ = 0.1488				
Final R indexes [all data]	$R_1 = 0.1231, wR_2 = 0.2033$				
Largest diff. peak/hole / e Å ⁻³ 0.28/-0.23					
Flack parameter	-0.1(4)				

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($A^2 \times 10^3$) for cu_231217LU_LGPZ305784_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
O(3)	4109(9)	5521(3)	7730(2)	65.1(12)
O(2)	3510(9)	3557(3)	5414(2)	69.6(14)
O(1)	798(9)	4568(3)	8037(2)	63.7(12)
N(2)	6304(10)	5329(3)	6382(3)	54.0(13)
N(3)	7077(11)	4444(4)	5078(3)	59.6(15)
C(1)	8224(11)	5637(4)	5856(3)	50.2(15)
C(2)	9720(12)	6370(4)	5995(4)	59.2(17)
C(3)	11653(13)	6663(5)	5469(4)	66.3(19)
C(4)	12097(15)	6213(5)	4812(4)	67.5(19)
C(5)	10616(13)	5473(5)	4671(3)	60.9(17)
C(6)	8649(13)	5178(4)	5192(3)	53.1(16)
C(7)	4998(12)	4167(4)	5565(3)	56.4(16)
C(8)	4657(12)	4643(4)	6285(3)	49.9(15)
C(9)	2795(12)	4398(4)	6856(3)	50.5(15)
C(10)	2738(13)	4899(4)	7542(3)	55.1(16)
C(11)	762(12)	3720(4)	6974(3)	53.4(15)
C(12)	-374(13)	3860(4)	7692(4)	55.7(16)
C(13)	-2390(14)	3365(5)	8027(4)	66.0(19)
C(14)	-3362(14)	2681(5)	7626(4)	70(2)
C(15)	-2338(14)	2517(4)	6911(4)	68.2(19)
C(16)	-323(14)	3038(4)	6577(4)	63.1(18)
C(17)	7530(16)	3927(4)	4396(3)	75(2)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for cu_231217LU_LGPZ305784_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*b^*}U_{12}+...]$.

Atom	U	11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O(3)		63(3)	69(3)	63(2)	-7(2)	2(2)	-2(3)
O(2)		65(3)	72(4)	72(3)	-12(3)	4(3)	-11(3)
O(1)		57(2)	75(3)	58(2)	-6(2)	8(2)	-4(3)
N(2)		46(3)	60(4)	55(3)	-6(3)	1(2)	-3(3)
N(3)		57(3)	63(4)	58(3)	-8(3)	2(2)	-1(3)
C(1)		38(3)	58(4)	55(3)	2(3)	-1(2)	2(3)
C(2)		45(3)	62(5)	71(4)	3(3)	-4(3)	-1(3)
C(3)		52(4)	70(5)	77(4)	3(4)	-1(4)	-3(3)
C(4)		56(4)	79(6)	68(4)	7(4)	1(3)	0(4)
C(5)		51(3)	74(5)	58(3)	1(4)	3(3)	0(4)
C(6)		46(3)	59(4)	55(3)	-2(3)	-4(3)	3(3)
C(7)		45(3)	62(5)	63(4)	-3(3)	-1(3)	1(3)
C(8)		45(3)	53(4)	51(3)	-2(3)	-4(3)	5(3)
C(9)		46(3)	53(4)	53(3)	1(3)	1(3)	5(3)
C(10)		49(3)	57(5)	60(3)	4(3)	-5(3)	-1(3)
C(11)		42(3)	59(4)	59(3)	0(3)	-6(3)	4(3)
C(12)		49(3)	55(4)	63(3)	0(3)	-4(3)	4(3)
C(13)		52(4)	82(6)	64(4)	10(4)	0(3)	7(4)
C(14)		54(4)	76(6)	82(5)	11(4)	1(4)	-7(4)
C(15)		58(4)	64 (5)	83(4)	1(4)	1 (3)	-12(4)
C(16)		56(4)	64 (5)	69(4)	-3(4)	-3(3)	-4(4)
C(10)		81 (5)	84(6)	58(4)	-17(4)	15(4)	-8(4)
C(17)		01(0)	01(0)	00(1)		20(1)	0(1)
Table	4 Boi	nd Lengt	hs for cu_2	31217LU_	LGPZ3057	′84_0m.	
Atom	Aton	h Length	/A	Ator	nAtom Le	ength/A	
O(3)	C(10)	1.226	(7)	C(4)	C(5)	1.389(9)	
O(2)	C(7)	1.225	(7)	C(5)	C(6)	1.390(8)	
O(1)	C(10)	1.373	(7)	C(7)	C(8)	1.489(8)	
O(1)	C(12)	1.393	(7)	C(8)	C(9)	1.395(8)	
N(2)	C(1)	1.387	(7)	C(9)	C(10)	1.450(9)	
N(2)	C(8)	1.348	(7)	C(9)	C(11)	1.457(8)	
N(3)	C(6)	1.395	(8)	C(11) C(12)	1.397(8)	
N(3)	C(7)	1.379	(7)	C(11) C(16)	1.387(8)	
N(3)	C(17)	1.474	(8)	C(12) C(13)	1.369(9)	
C(1)	C(2)	1.382	(8)	C(13) C(14) 1	.374(10)	
C(1)	C(6)	1.397	(8)	C(14) C(15)	1.380(9)	
C(2)	C(3)	1.384	(8)	C(15) C(16)	1.392(9)	
C(3)	C(4)	1.380	(9)				
Table	F D -		- (4 2 4 7 1 1 1	CD72057		
	5 BOI	na Angle Atom	s for cu_23		GPZ3057	54_0m. n Atom A	nalo/°
		C(12)	Angle/	E) N			110 0/5)
C(10)	U(1)	C(12)	107.1(5) r	(2) C(0)	C(3)	122 1(5)
C(0)	N(2)	C(1)	120.27	5) ((9) C(0)	C(7)	117 7(5)
C(0)	N(3)	C(17)	100.3(C(0) C(9)	C(10)	126 5(6)
C(7)	N(S)	C(0)	125.7(5) (C(9) = C(9)	C(11)	136.3(6)
C(7)	N(3)	C(17)	116.0(5) ((10) C(9)		105.8(5)
N(2)	C(1)	C(6)	118.4(6) (D(3) C(10)	0(1)	119.2(6)
C(2)	C(1)	N(2)	120.8(6) (D(3) C(10)) C(9)	131.1(6)
C(2)	C(1)	C(6)	120.9(6) (D(1) C(10)) C(9)	109.7(5)
C(1)	C(2)	C(3)	120.1(6) (.(12) C(11) C(9)	105.4(5)
C(4)	C(3)	C(2)	119.5(7) C	.(16) C(11) C(9)	138.3(6)
C(3)	C(4)	C(5)	120.8(6) (.(16) C(11) C(12)	116.2(6)
C(4)	C(5)	C(6)	120.1(6) (D(1) C(12) C(11)	112.0(5)
N(3)	C(6)	C(1)	118.6(5) (.(13) C(12) O(1)	123.3(6)
C(5)	C(6)	N(3)	122.8(6) (C(13) C(12)) C(11)	124.8(6)
C(5)	C(6)	C(1)	118.6(6) (C(12) C(13)) C(14)	117.4(6)
O(2)	C(7)	N(3)	121.6(6) (C(13) C(14) C(15)	120.3(7)
O(2)	C(7)	C(8)	121.6(5) (C(14) C(15)) C(16)	121.2(7)
N(3)	C(7)	C(8)	116.8(6) (C(11) C(16) C(15)	120.0(6)
N(2)	C(8)	C(7)	117.1(5)			

Table 6 Torsion Angles for cu_231217LU_LGPZ305784_0m.						
АВС	D	Angle/°	A B C D Angle/°			
O(2)C(7) C(8)	N(2)	-176.9(5)	C(8) N(2) C(1) C(6) -4.4(8)			
O(2)C(7) C(8)	C(9)	4.8(9)	C(8) C(9) C(10) O(3) -1.2(10)			
O(1) C(12) C(13)) C(14)	-179.7(6)	C(8) C(9) C(10) O(1) -180.0(5)			
N(2)C(1) C(2)	C(3)	179.2(5)	C(8) C(9) C(11)C(12) 179.6(6)			
N(2)C(1) C(6)	N(3)	1.6(8)	C(8) C(9) C(11)C(16) -2.9(13)			
N(2)C(1) C(6)	C(5)	-178.6(5)	C(9) C(11)C(12)O(1) -0.5(7)			
N(2)C(8) C(9)	C(10)	-0.5(8)	C(9) C(11)C(12)C(13) 179.8(6)			
N(2)C(8) C(9)	C(11)	-179.2(6)	C(9) C(11)C(16)C(15) 180.0(7)			
N(3)C(7) C(8)	N(2)	3.3(8)	C(10)O(1) C(12)C(11) -0.1(7)			
N(3)C(7) C(8)	C(9)	-175.0(5)	C(10)O(1) C(12)C(13) 179.6(6)			
C(1) N(2) C(8)	C(7)	1.9(8)	C(10)C(9) C(11)C(12) 0.8(6)			
C(1) N(2) C(8)	C(9)	-179.8(5)	C(10)C(9) C(11)C(16) 178.4(7)			
C(1) C(2) C(3)	C(4)	-0.7(9)	C(11)C(9) C(10)O(3) 177.8(6)			
C(2) C(1) C(6)	N(3)	-179.7(5)	C(11)C(9) C(10)O(1) -1.0(7)			
C(2) C(1) C(6)	C(5)	0.1(9)	C(11)C(12)C(13)C(14) 0.0(10)			
C(2) C(3) C(4)	C(5)	0.3(10)	C(12)O(1) C(10)O(3) -178.3(5)			
C(3) C(4) C(5)	C(6)	0.3(9)	C(12)O(1) C(10)C(9) 0.7(7)			
C(4) C(5) C(6)	N(3)	179.3(6)	C(12)C(11)C(16)C(15) -2.7(9)			
C(4) C(5) C(6)	C(1)	-0.5(9)	C(12)C(13)C(14)C(15) -0.6(10)			
C(6) N(3) C(7)	O(2)	174.0(6)	C(13)C(14)C(15)C(16) -0.4(10)			
C(6) N(3) C(7)	C(8)	-6.2(8)	C(14)C(15)C(16)C(11) 2.2(10)			
C(6) C(1) C(2)	C(3)	0.5(9)	C(16)C(11)C(12)O(1) -178.6(5)			
C(7) N(3) C(6)	C(1)	3.8(9)	C(16)C(11)C(12)C(13) 1.7(9)			
C(7) N(3) C(6)	C(5)	-176.0(6)	C(17) N(3) C(6) C(1) -177.9(6)			
C(7) C(8) C(9)	C(10)	177.7(5)	C(17) N(3) C(6) C(5) 2.3(9)			
C(7) C(8) C(9)	C(11)	-0.9(10)	C(17) N(3) C(7) O(2) -4.3(9)			
C(8) N(2) C(1)	C(2)	176.8(5)	C(17)N(3) C(7) C(8) 175.5(5)			

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for cu_231217LU_LGPZ305784_0m.

Atom	x	У	z	U(eq)
H(2)	6148.77	5603.91	6812.34	65
H(2A)	9419.99	6673.37	6450.79	71
H(3)	12667.65	7170.63	5559.89	80
H(4)	13430.96	6411.75	4451.87	81
H(5)	10948.45	5167.37	4217.22	73
H(13)	-3088.94	3489.68	8518.34	79
H(14)	-4746.92	2320.24	7842.88	85
H(15)	-3019.27	2039.79	6641.88	82
H(16)	309.58	2926.05	6077.03	76
H(17A)	6958.28	4247.13	3947.77	112
H(17B)	6396.42	3410.37	4431.28	112
H(17C)	9537.44	3778.06	4356.35	112

6. Characterization of products

3-(2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3a)^[3] orange solid, mp: 266-268 °C, 56.6 mg, 91%;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.50 (s, 1H), 10.94 (s, 1H), 8.70 (dd, *J* = 1.16, 8.00 Hz, 1H), 7.35-7.37 (m, 1H), 7.26-7.29 (m, 1H), 7.16-7.20 (m, 2H), 7.05 (dt, *J* = 1.26, 7.50 Hz, 1H), 6.88-6.95 (m, 2H), 3.58 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.20, 156.43, 140.23, 137.49, 128.75, 125.91, 125.63, 125.17, 124.54, 124.04, 123.01, 121.01, 116.47, 115.28, 109.52, 97.82, 30.03.

HRMS (ESI-TOF) calcd for C₁₇H₁₄N₃O₂ [M + H]⁺: 292.1081; found: 292.1076.

3-(5-Fluoro-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3b) orange solid, mp: 254-256 °C, 58.1 mg, 88% yield;

¹**H NMR (400 MHz, DMSO-***d***₆): \delta = 14.64 (s, 1H), 10.97 (s, 1H), 8.51 (dd,** *J* **= 2.18, 12.02 Hz, 1H), 7.40-7.42 (m, 1H), 7.32-7.34 (m, 1H), 7.20-7.23 (m, 2H), 6.83-6.86 (m, 2H), 3.60 (s, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆):** δ = 172.25, 156.79-159.08 (d, *J*_{C-F} = 171.70 Hz), 156.33, 141.02, 133.63, 128.86, 125.34, 124.62, 124.47, 116.80, 115.34, 112.12-112.40 (d, *J*_{C-F} = 21.02 Hz), 111.01-111.25 (d, *J*_{C-F} = 18.12 Hz), 109.59-109.68 (d, *J*_{C-F} = 6.76 Hz), 97.32-97.35 (d, *J*_{C-F} = 2.22 Hz), 30.11.

HRMS (ESI-TOF) calcd for $C_{17}H_{13}FN_3O_2 [M + H]^+$: 310.0986; found: 310.0982.

3-(5-Chloro-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3c) orange solid, mp: 276-278 °C, 51.4 mg, 74% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 14.63 (s, 1H), 11.08 (s, 1H), 8.75 (d, *J* = 2.15 Hz, 1H), 7.41-7.43 (m, 1H), 7.34-7.36 (m, 1H), 7.21-7.24 (m, 2H), 7.06 (dd, *J* = 2.27, 8.22 Hz, 1H), 6.88 (d, *J* = 8.25 Hz, 1H), 3.62 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.02, 156.32, 141.25, 135.91, 128.92, 125.27, 125.21, 125.04, 124.69, 124.64, 124.28, 116.90, 115.41, 110.59, 96.57, 30.19.

HRMS (ESI-TOF) calcd for C₁₇H₁₃ClN₃O₂ [M + H]⁺: 326.0691; found: 326.0694.

3-(5-Bromo-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3d) orange solid, mp: 267-269 °C, 56.4 mg, 71% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 14.62 (s, 1H), 11.08 (s, 1H), 8.88 (d, *J* = 2.04 Hz, 1H), 7.40-7.43 (m, 1H), 7.32-7.35 (m, 1H), 7.21-7.24 (m, 2H), 7.16-7.19 (m, 1H), 6.84 (d, *J* = 8.16 Hz, 1H), 3.58 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.38, 156.37, 141.33, 136.27, 130.53, 128.96, 127.81, 127.68, 127.08, 125.25, 124.71, 116.94, 115.46, 113.26, 111.18, 96.44, 30.23.

HRMS (ESI-TOF) calcd for C₁₇H₁₃BrN₃O₂ [M + H]⁺: 370.0186; found: 370.0183.

3-(5-Methyl-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3e) orange solid, mp: 271-273 °C, 45.5 mg, 70% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 14.54 (s, 1H), 10.85 (s, 1H), 8.55 (d, *J* = 1.76 Hz, 1H), 7.37-7.40 (m, 1H), 7.27-7.30 (m, 1H), 7.18-7.20 (m, 2H), 6.88 (dd, *J* = 1.76, 7.88 Hz, 1H), 6.78 (d, *J* = 7.80 Hz, 1H), 3.60 (s, 3H), 2.30 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.38, 156.37, 141.33, 136.27, 130.53, 128.96, 127.81, 127.68, 127.08, 125.25, 124.71, 116.94, 115.46, 113.26, 111.18, 96.44, 30.23.

HRMS (ESI-TOF) calcd for C₁₈H₁₆N₃O₂ [M + H]⁺: 306.1237; found: 306.1233.

3-(5-Methoxy-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3f) orange solid, mp: 268-270 °C, 26.4 mg, 38% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.64 (s, 1H), 10.78 (s, 1H), 8.44 (d, *J* = 2.60 Hz, 1H), 7.39-7.41 (m, 1H), 7.30-7.32 (m, 1H), 7.19-7.21 (m, 2H), 6.72 (d, *J* = 2.45 Hz, 1H), 6.67-6.69 (m, 1H), 3.74 (s, 3H), 3.61 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.59, 156.54, 154.56, 140.50, 137.47, 131.65, 128.81, 127.54, 124.62, 124.12, 123.96, 115.37, 112.61, 111.91, 109.77, 98.18, 55.38, 30.14.

HRMS (ESI-TOF) calcd for $C_{18}H_{16}N_3O_3$ [M + H]⁺: 322.1186; found: 322.1183.

3-(6-Fluoro-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3g) orange solid, mp: 252-254 °C, 35.9 mg, 54% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.27 (s, 1H), 11.04 (s, 1H), 8.63-8.68 (m, 1H), 7.31-7.35 (m, 1H), 7.22-7.26 (m, 1H), 7.15-7.17 (m, 2H), 6.67-6.72 (m, 1H), 6.62-6.65 (m, 1H), 3.55 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.08, 159.39-161.78 (d, *J*_{C-F} = 179.07 Hz), 156.39, 139.83, 138.52-138.64 (d, *J*_{C-F} = 8.82 Hz), 128.63, 127.04, 127.12, 125.52, 124.53, 124.05, 119.39-119.42 (d, *J*_{C-F} = 1.80 Hz), 116.44, 115.24, 107.10-107.31 (d, *J*_{C-F} = 15.81 Hz), 97.09-97.15 (d, *J*_{C-F} = 4.65

Hz), 29.99.

HRMS (ESI-TOF) calcd for $C_{17}H_{13}FN_3O_2 [M + H]^+$: 310.0986; found: 310.0984.

3-(6-Chloro-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3h) orange solid, mp: 251-253 °C, 61.3 mg, 89% yield;

¹H NMR (400 MHz, DMSO-*d*₆): δ = 14.44 (s, 1H), 11.06 (s, 1H), 8.65 (d, *J* = 8.70 Hz, 1H), 7.37-7.39 (m, 1H), 7.30-7.31 (m, 1H), 7.19-7.21 (m, 2H), 6.94 (dd, *J* = 2.20, 8.55 Hz, 1H), 6.86 (d, *J* = 2.15 Hz, 1H), 3.58 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.18, 156.33, 140.73, 138.43, 129.03, 128.86, 126.94, 125.38, 124.63, 124.44, 122.04, 120.63, 116.75, 115.38, 109.29, 96.71, 30.11.

HRMS (ESI-TOF) calcd for C₁₇H₁₃ClN₃O₂ [M + H]⁺: 326.0691; found: 326.0692.

3-(6-Bromo-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3i) orange solid, mp: 248-250 °C, 51.3 mg, 65% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 14.50 (s, 1H), 11.08 (s, 1H), 8.63 (d, *J* = 8.65 Hz, 1H), 7.40-7.42 (m, 1H), 7.33-7.35 (m, 1H), 7.21-7.23 (m, 2H), 7.10 (dd, *J* = 2.05, 8.65 Hz, 1H), 7.02 (d, *J* = 2.00 Hz, 1H), 3.60 (s, 3H);

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 172.02, 156.34, 140.92, 138.65, 128.90, 127.31, 125.38, 124.66, 124.50, 123.49, 122.42, 117.25, 116.80, 115.41, 112.08, 96.69, 30.13.

HRMS (ESI-TOF) calcd for C₁₇H₁₃BrN₃O₂ [M + H]⁺: 370.0186; found: 370.0184.

3-(1-Methylquinoxalin-2-one)-2-oxoindoline-6-carboxylate (3j) orange solid, mp: 284-286 °C, 53.6 mg, 73% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.78 (s, 1H), 11.13 (s, 1H), 8.72 (d, *J* = 8.36 Hz, 1H), 7.32-7.39 (m, 4H), 7.20-7.24 (m, 2H), 3.81 (s, 3H), 3.58 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.08, 166.87, 155.87, 141.85, 136.75, 129.04, 127.83, 125.03, 124.96, 124.93, 124.83, 124.56, 122.07, 117.12, 115.28, 109.66, 96.61, 52.21, 30.09. HRMS (ESI-TOF) calcd for C₁₉H₁₆N₃O₄ [M + H] ⁺: 350.1135; found: 350.1138.

3-(5, 6-Difluoro-2-oxoindolin-3-yl)-1-methylquinoxalin-2-one (3k) orange solid, mp: 261-263 °C, 52.4 mg, 74% yield;

¹**H** NMR (400 MHz, DMSO-*d*₆): δ = 14.44 (s, 1H), 11.07 (s, 1H), 8.65 (dd, *J* = 8.84, 13.92 Hz, 1H), 7.38-7.40 (m, 1H), 7.30-7.32 (m, 1H), 7.20-7.22 (m, 1H), 7.18-7.20 (m, 1H), 6.82 (dd, *J* = 7.36, 10.56 Hz, 1H), 3.59 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.31, 156.40, 140.69, 133.51, 128.78, 126.02, 125.28, 124.70, 124.56, 124.00, 123.67, 116.83, 115.85, 115.41-115.48 (d, *J*_{C-F} = 5.46 Hz), 113.81-114.05 (d, *J*_{C-F} = 17.49 Hz), 96.47, 30.11.

HRMS (ESI-TOF) calcd for $C_{17}H_{12}F_2N_3O_2 [M + H]^+$: 328.0892; found: 328.0896.

3-(1*H***-pyrrolo [2,3-b] pyridine-2-one)-1-methylquinoxalin-2-one (31)** orange solid, mp: 223-225 °C, 63.0 mg, 98% yield;

¹H NMR (400 MHz, DMSO-*d*₆): δ = 14.35 (s, 1H), 11.71 (s, 1H), 8.95 (d, *J* = 7.40 Hz, 1H), 7.99 (dd, *J* = 1.55, 5.10 Hz, 1H), 7.42-7.47 (m, 2H), 7.23-7.30 (m, 2H), 7.04-7.06 (m, 1H), 3.63 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 171.66, 156.14, 140.31, 136.69, 133.34, 129.04, 125.09, 124.95, 124.75, 117.50, 117.19, 115.52, 30.20.

HRMS (ESI-TOF) calcd for C₁₆H₁₃N₄O₂ [M + H]⁺: 293.1033; found: 293.1035.

3-(Benzofuran-2-one)-1-ethylquinoxalin-2-one (3m) orange solid, mp: 124-126 °C, 40.9 mg, 66% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 12.98 (s, 1H), 8.68 (dd, *J* = 1.45, 7.80 Hz, 1H), 7.57 (dd, *J* = 1.47, 7.92 Hz, 1H), 7.50 (d, *J* = 8.15 Hz, 1H), 7.32 (dt, *J* = 1.50, 7.70 Hz, 1H), 7.27 (dt, *J* = 1.35, 7.62 Hz, 1H), 7.14-7.23 (m, 3H), 3.65 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.03, 155.34, 150.08, 149.80, 132.46, 129.03, 126.01, 125.75, 124.81, 123.86, 117.43, 115.47, 111.50, 110.05, 81.02, 30.25.

HRMS (ESI-TOF) calcd for C₁₇H₁₃N₂O₃ [M + H]⁺: 293.0921; found: 293.0924.

(regioisomeric mixture with 4:1 ratio)

3-(2-oxoindolin-3-yl)-1, 6-dimethylquinoxalin-2-one

3-(2-oxoindolin-3-yl)-1, 7-dimethylquinoxalin-2-one (3ab) orange solid, mp: 239-241 °C, 53.2 mg, 82% yield;

¹H NMR (400 MHz, DMSO-*d*₆): δ = 14.57 (s, 0.25H), 14.52 (s, 1H), 10.95 (s, 0.93H), 10.92 (s, 0.31H), 8.72 (d, *J* = 7.80 Hz, 1.02H), 8.69 (s, 0.19H), 7.29 (d, *J* = 8.40 Hz, 1.04H), 7.24 (s, 0.22H), 7.22 (d, *J* = 8.10 Hz, 0.31H), 7.13 (d, *J* = 1.85 Hz, 1.02H), 7.01-7.07 (m, 2.59H), 6.89-6.95 (m, 2.59H), 3.60 (s, 0.65H), 3.59 (s, 2.85H), 2.37 (s, 0.64H), 2.33 (s, 2.93H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.20, 156.26, 140.41, 137.35, 134.26, 126.61, 125.86, 125.16, 125.02, 123.02, 121.06, 116.60, 115.21, 109.58, 97.62, 30.06, 21.36, 20.65.

HRMS (ESI-TOF) calcd for $C_{18}H_{16}N_3O_2$ [M + H]⁺: 306.1237; found: 306.1233.

(regioisomeric mixture with 2:1 ratio)

3-(2-oxoindolin-3-yl)-1-methyl-6-chloroquinoxalin-2-one

3-(2-oxoindolin-3-yl)-1-methyl-7-chloroquinoxalin-2-one (3ac) orange solid, mp: 255-257 °C, 38.2 mg, 54% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): *δ* = 14.48 (s, 0.58H), 14.39 (s, 1H), 10.99 and 10.98 (s, 1.64H), 8.70 and 8.67 (m, 1.63H), 7.47 (m, 1.63H), 7.33-7.38 (m, 1.69H), 7.19-7.22 (m, 1.69H), 7.06-7.10 (m, 1.64H), 6.89-6.96 (m, 3.36), 3.58 (s, 4.87H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.17, 156.47, 156.34, 139.70, 137.86, 137.66, 129.98, 128.47, 127.82, 126.18, 125.97, 125.67, 125.47, 124.81, 124.11, 123.30, 122.75, 121.15, 117.83, 116.78, 115.89, 115.09, 109.63, 98.96, 98.36, 30.24, 30.20.

HRMS (ESI-TOF) calcd for C₁₇H₁₃ClN₃O₂ [M + H]⁺: 326.0691; found: 326.0692.

(regioisomeric mixture with 4:1 ratio)

3-(2-oxoindolin-3-yl)-1-methyl-6-bromoquinoxalin-2-one

3-(2-oxoindolin-3-yl)-1-methyl-7-bromoquinoxalin-2-one (3ad) orange solid, mp: 268-270 °C, 68.6 mg, 89% yield;

¹H NMR (400 MHz, DMSO-*d*₆): δ = 14.47 (s, 0.25H), 14.38 (s, 1H), 11.00 (s, 1.24H), 8.69 (d, *J* = 8.05 Hz, 1.25H), 7.57 (s, 1.26H), 7.24-7.27 (m, 1.19H), 7.06-7.14 (m, 2.19H), 6.89-6.96 (m, 2.42H), 3.57 (s, 3.53H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.15, 156.34, 139.70, 137.86, 128.20, 127.27, 126.17, 126.13, 125.66, 125.15, 123.22, 122.75, 121.58, 121.14, 118.64, 117.08, 116.24, 109.62, 98.97, 30.15.

HRMS (ESI-TOF) calcd for $C_{17}H_{13}BrN_3O_2 [M + H]^+$: 370.0186; found: 370.0182.

3-(2-oxoindolin-3-yl)-1-methyl-6-trifluoromethylquinoxalin-2-one (3ae) orange solid, mp: 291-293 °C, 38.4 mg, 53% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.43 (s, 1H), 11.02 (s, 1H), 8.69 (d, *J* = 8.00 Hz, 1H), 7.71 (d, *J* = 2.00 Hz, 1H), 7.54 (d, *J* = 8.60 Hz, 1H), 7.48 (dd, *J* = 1.95, 8.65 Hz, 1H), 7.09 (dt, *J* = 1.25, 7.52 Hz, 1H), 6.95 (dt, *J* = 1.30, 7.60 Hz, 1H), 6.91 (dd, *J* = 1.30, 7.60 Hz, 1H), 3.61 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): *δ* = 172.17, 156.74, 139.59, 137.98, 131.65, 126.22, 125.80-126.16 (d, *J*_{C-F} = 36.15 Hz), 124.85, 124.52, 123.10, 122.63, 121.17, 120.06, 115.90, 113.34, 109.63, 99.21, 30.25.

HRMS (ESI-TOF) calcd for C₁₈H₁₂F₃N₃O₂ [M + H]⁺: 360.0954; found: 360.0951.

3-(2-oxoindolin-3-yl)-1, 6, 7-trimethylquinoxalin-2-one (3af) orange solid, mp: 244-246 °C, 45.9 mg, 63% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.58 (s, 1H), 10.93 (s, 1H), 7.22 (s, 1H), 7.16 (s, 1H), 6.81 (d, *J* = 7.75 Hz, 1H), 6.74-6.76 (m, 1H), 3.60 (s, 3H), 2.28 (s, 3H), 2.24 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 176.87, 161.03, 144.11, 136.50, 127.90, 126.22, 124.84, 121.61, 120.95, 116.08, 114.81, 109.56, 96.94, 31.42, 19.75, 19.11.

HRMS (ESI-TOF) calcd for C₁₉H₁₈N₃O₂ [M + H]⁺: 320.1394; found: 320.1395.

3-(2-oxoindolin-3-yl)-1-methyl-6, 7-difluoroquinoxalin-2-one (3ag) orange solid, mp: 274-276 °C, 57.0 mg, 81% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.41 (s, 1H), 10.99 (s, 1H), 8.68 (d, *J* = 8.00 Hz, 1H), 7.63 (dd, *J* = 7.77, 10.92 Hz, 1H), 7.57 (dd, *J* = 7.55, 12.15 Hz, 1H), 7.07 (dt, *J* = 1.25, 7.60 Hz, 1H), 6.94 (dt, *J* = 1.30, 7.77 Hz, 1H), 6.90 (dd, *J* = 1.22, 7.67 Hz, 1H), 3.55 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 171.28, 156.31, 139.87, 137.69, 129.77, 126.00, 125.53, 122.81, 122.13, 109.62, 104.86-105.10 (d, *J*_{C-F} = 23.70 Hz), 30.67.

HRMS (ESI-TOF) calcd for C₁₇H₁₂F₂N₃O₂ [M + H]⁺: 328.0892; found: 328.0894.

3-(2-oxoindolin-3-yl)-1-methyl-6, 7-dichloroquinoxalin-2-one (3ah) orange solid, mp: 259-261 °C, 75.5 mg, 97% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 14.33 (s, 1H), 11.01 (s, 1H), 8.66 (d, *J* = 8.00 Hz, 1H), 7.67 (s, 1H), 7.59 (s, 1H), 7.08 (t, *J* = 7.55 Hz, 1H), 6.94 (t, *J* = 7.60 Hz, 1H), 6.90 (d, *J* = 7.65 Hz, 1H), 3.55 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 173.54, 156.43, 143.81, 138.03, 130.07, 128.92, 126.22, 125.93, 124.09, 121.57, 116.70, 110.05, 94.92, 30.42.

HRMS (ESI-TOF) calcd for $C_{17}H_{12}Cl_2N_3O_2 [M + H]^+$: 360.0301; found: 360.0304.

3-(2-oxoindolin-3-yl)-1-ethylquinoxalin-2-one (3ai) orange solid, mp: 259-261 °C, 58.7 mg, 90% vield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.51 (s, 1H), 10.94 (s, 1H), 8.71 (d, *J* = 7.96 Hz, 1H), 7.40-7.43 (m, 1H), 7.28-7.31 (m, 1H), 7.15-7.21 (m, 2H), 7.05 (dt, *J* = 1.24, 7.44 Hz, 1H), 6.88-6.95 (m, 2H), 4.21-4.26 (q, *J* = 7.07 Hz, 2H), 1.27 (t, *J* = 7.04 Hz, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.19, 156.00, 140.26, 137.48, 127.44, 125.92, 125.88, 125.17, 124.49, 124.21, 123.01, 121.00, 116.89, 115.03, 109.52, 97.74, 37.82, 12.53.

HRMS (ESI-TOF) calcd for C₁₈H₁₆N₃O₂ [M + H]⁺: 306.1237; found: 306.1231.

3-((2-oxoindolin-3-yl)-1-Allylquinoxalin-2-one (3aj) orange solid, mp: 257-259 °C, 62.5 mg, 93% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.52 (s, 1H), 10.97 (s, 1H), 8.69 (d, *J* = 7.96 Hz, 1H), 7.28-7.32 (m, 2H), 7.14-7.18 (m, 2H), 7.06 (dt, *J* = 1.24, 7.48 Hz, 1H), 6.89-6.95 (m, 2H), 5.92-6.01 (m, 1H), 5.22-5.25 (m, 1H), 5.19-5.20 (m, 1H), 4.84-4.86 (m, 1H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.21, 156.29, 140.17, 137.55, 132.07, 127.75, 125.93, 125.28, 124.60, 123.97, 122.95, 121.04, 117.48, 116.72, 115.66, 109.56, 98.03, 44.86.

HRMS (ESI-TOF) calcd for $C_{19}H_{16}N_3O_2 [M + H]^+$: 318.1237; found: 318.1239.

3-((2-oxoindolin-3-yl)-1-(2-propynyl) quinoxalin-2-one (3ak) orange solid, mp: 272-274 °C, 44.2 mg, 64% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.45 (s, 1H), 11.01 (s, 1H), 8.68 (d, *J* = 8.00 Hz, 1H), 7.45-7.46 (m, 1H), 7.34-7.36 (m, 1H), 7.23-7.24 (m, 2H), 7.08 (t, *J* = 7.47 Hz, 1H), 6.92 (t, *J* = 7.67 Hz, 1H), 5.08 (d, *J* = 2.50 Hz, 1H), 3.46 (m, 1H);

¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 172.69$, 156.04, 138.89, 137.69, 130.35, 127.40, 125.87, 125.63, 125.17, 124.08, 123.28, 121.19, 118.23, 115.57, 112.70, 109.74, 78.64, 75.45, 32.31. HRMS (ESI-TOF) calcd for C₁₉H₁₄N₃O₂ [M + H]⁺: 316.1081; found: 316.1085.

3-(2-oxoindolin-3-yl)-1-methylacetatequinoxalin-2-one (3al) orange solid, mp: 278-280 °C, 72.2 mg, 94% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.46 (s, 1H), 11.02 (s, 1H), 8.63 (d, *J* = 7.48 Hz, 1H), 7.35-7.39 (m, 2H), 7.15-7.24 (m, 2H), 7.09 (dt, *J* = 1.24, 7.52 Hz, 1H), 6.90-6.96 (m, 2H), 5.10 (s, 2H), 3.74 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.17, 168.67, 156.78, 139.27, 137.77, 127.87, 125.84, 125.67, 125.64, 124.97, 124.11, 122.63, 121.14, 116.87, 115.18, 109.67, 98.51, 52.94, 44.59.

HRMS (ESI-TOF) calcd for C₁₉H₁₆N₃O₄ [M + H]⁺: 350.1135; found: 350.1132.

3-(2-oxoindolin-3-yl)-1-cyclopropylmethylquinoxalin-2-one (3am) orange solid, mp: 267-269 °C, 63.8 mg, 91% yield;

¹H NMR (400 MHz, DMSO-*d*₆): δ = 14.53 (s, 1H), 10.96 (s, 1H), 8.67 (d, *J* = 8.05 Hz, 1H), 7.52-7.54 (m, 1H), 7.32-7.34 (m, 1H), 7.19-7.21 (m, 2H), 7.06 (t, *J* = 7.55 Hz, 1H), 6.94 (t, *J* = 7.67 Hz, 1H), 6.91 (d, *J* = 7.60 Hz, 1H), 4.19 (d, *J* = 6.95 Hz, 1H), 1.26-1.34 (m, 2H), 0.51-0.52 (m, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.19, 156.59, 140.24, 137.51, 127.90, 125.95, 125.77, 125.25, 124.62, 124.21, 122.97, 121.07, 116.92, 115.58, 109.57, 97.89, 46.25, 9.98, 4.27. HRMS (ESI-TOF) calcd for C₂₀H₁₈N₃O₂ [M + H]⁺: 332.1394; found: 332.1392.

3-(2-oxoindolin-3-yl)-1-pentylmethylquinoxalin-2-one (3an) orange solid, mp: 231-233 °C, 57.7 mg, 77% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.51 (s, 1H), 10.94 (s, 1H), 8.69 (dd, *J* = 1.20, 8.04 Hz, 1H), 7.35-7.38 (m, 1H), 7.27-7.29 (m, 1H), 7.16-7.18 (m, 2H), 7.05 (dt, *J* = 1.24, 7.48 Hz, 1H), 6.88-6.95 (m, 2H), 4.15 (t, *J* = 7.76 Hz, 1H), 1.62-1.70 (m, 2H), 1.33-1.42 (m, 4H), 3.32 (t, *J* = 6.94 Hz, 1H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.19, 156.19, 140.18, 137.48, 127.66, 125.92, 125.83, 125.17, 124.48, 124.17, 123.00, 121.01, 116.86, 115.12, 109.52, 97.78, 42.58, 28.93, 26.70, 22.40, 14.36.

HRMS (ESI-TOF) calcd for C₂₁H₂₂N₃O₂ [M + H]⁺: 348.1707; found: 348.1702.

3-(2-oxoindolin-3-yl)-1-benzylquinoxalin-2-one (3ao) orange solid, mp: 293-295 °C, 60.2 mg, 76% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.57 (s, 1H), 11.01 (s, 1H), 8.69 (d, *J* = 7.72 Hz, 1H), 7.34-7.36 (m, 4H), 7.22-7.30 (m, 3H), 7.16 (t, *J* = 6.98 Hz, 1H), 7.06-7.11 (m, 2H), 6.91-6.95 (m, 3H), 5.50 (s, 2H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.27, 157.00, 140.21, 137.63, 136.36, 129.18, 128.92, 127.86, 127.72, 127.13, 126.00, 125.40, 124.75, 123.99, 122.96, 121.09, 116.83, 115.74, 109.62, 98.28, 45.93.

HRMS (ESI-TOF) calcd for $C_{23}H_{18}N_3O_2$ [M + H]⁺: 368.1394; found: 368.1392.

3-(2-oxoindolin-3-yl)-1*-p***-Methylphenylquinoxalin-2-one (3ap)** orange solid, mp: 285-287 °C, 38.6 mg, 47% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.57 (s, 1H), 10.99 (s, 1H), 8.70 (d, *J* = 7.95 Hz, 1H), 7.35 (dd, *J* = 1.37, 7.92 Hz, 1H), 7.24-7.26 (m, 3H), 7.14-7.16 (m, 3H), 7.06-7.10 (m, 2H), 6.91-6.95 (m, 2H), 5.46 (s, 2H), 2.26 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.95, 156.99, 140.41, 138.33, 131.28, 129.73, 127.82, 127.15, 124.74, 117.15, 110.18, 97.69, 15.66, 21.10.

HRMS (ESI-TOF) calcd for C₂₄H₂₀N₃O₂ [M + H]⁺: 382.1550; found: 382.1552.

3-(2-oxoindolin-3-yl)-1*-p***-bromophenylquinoxalin-2-one (3aq)** orange solid, mp: 300-301 °C, 49.6 mg, 52% yield;

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ = 14.55 (s, 1H), 11.00 (s, 1H), 8.68 (d, *J* = 7.88 Hz, 1H), 7.54 (d, *J* = 8.32 Hz, 2H), 7.32-7.35 (m, 3H), 7.14-7.22 (m, 2H), 7.05-7.10 (m, 2H), 6.90-6.94 (m, 2H), 5.45 (s, 2H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.26, 157.04, 140.18, 137.63, 135.90, 132.02, 129.52, 127.75, 126.05, 125.98, 125.40, 124.80, 123.98, 122.93, 121.08, 120.80, 116.84, 115.61, 109.61, 98.30, 45.43.

HRMS (ESI-TOF) calcd for C₂₃H₁₇BrN₃O₂ [M + H]⁺: 446.0499; found: 446.0451.

3-(2-oxoindolin-3-yl)-quinoxalin-2(1*H***)-one (3ar)^[3]** orange solid, mp: 408-410 °C, 38.0 mg, 59% yield;

¹**H NMR (400 MHz, DMSO-***d*₆): δ = 14.40 (s, 1H), 11.98 (s, 1H), 10.94 (s, 1H), 8.71 (dd, *J* = 1.12, 8.04 Hz, 1H), 7.27-7.30 (m, 1H), 7.10-7.16 (m, 3H), 7.06 (dt, *J* = 1.28, 7.56 Hz, 1H), 6.89-6.96 (m, 2H);

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 172.11, 157.10, 141.48, 137.48, 127.89, 127.33, 125.96, 125.19, 124.27, 124.01, 123.07, 121.03, 116.20, 115.42, 109.52, 97.96.

HRMS (ESI-TOF) calcd for C₁₆H₁₂N₃O₂ [M + H]⁺: 278.0924; found: 278.0919.

7. Reference

- [1] W. L. F. Armarego, C. Chai, in *Purification of Laboratory Chemicals (Seventh Edition)*, Butterworth-Heinemann, Boston, **2013**, pp. 103-554.
- [2] J. Zhou, Q. Ren, N. Xu, C. Wang, S. Song, Z. Chen, J. Li, Green Chem. 2021, 23, 5753-5758.
- [3] Y.-Y. Han, Z.-J. Wu, X.-M. Zhang, W.-C. Yuan, Tetrahedron Lett. 2010, 51, 2023-2028.

8. Copies of 1H NMR and 13C NMR Spectra

Figure S2 The ¹³C NMR Spectrum of Compound 3a in DMSO-d₆

Figure S4 The ¹³C NMR Spectrum of Compound 3b in DMSO-*d*₆

Figure S6 The ¹³C NMR Spectrum of Compound 3c in DMSO-*d*₆

Figure S8 The ¹³C NMR Spectrum of Compound 3d in DMSO-d₆

Figure S10 The ¹³C NMR Spectrum of Compound 3e in DMSO-d₆

Figure S12 The ¹³C NMR Spectrum of Compound 3f in DMSO-d₆

Figure S14 The ¹³C NMR Spectrum of Compound 3g in DMSO-d₆

Figure S16 The ¹³C NMR Spectrum of Compound 3h in DMSO-d₆

Figure S18 The ¹³C NMR Spectrum of Compound 3i in DMSO-*d*₆

Figure S20 The ¹³C NMR Spectrum of Compound 3j in DMSO-d₆

Figure S22 The ¹³C NMR Spectrum of Compound 3k in DMSO-*d*₆

Figure S24 The ¹³C NMR Spectrum of Compound 31 in DMSO-*d*₆

Figure S26 The ¹³C NMR Spectrum of Compound 3m in DMSO-d₆

Figure S28 The ¹³C NMR Spectrum of Compound 3ab in DMSO-d₆

Figure S30 The ¹³C NMR Spectrum of Compound 3ac in DMSO-d₆

Figure S32 The ¹³C NMR Spectrum of Compound 3ad in DMSO-d₆

Figure S34 The ¹³C NMR Spectrum of Compound 3ae in DMSO-d₆

Figure S36 The ¹³C NMR Spectrum of Compound 3af in DMSO-d₆

Figure S38 The ¹³C NMR Spectrum of Compound 3ag in DMSO-d₆

Figure S40 The ¹³C NMR Spectrum of Compound 3ah in DMSO-d₆

Figure S42 The ¹³C NMR Spectrum of Compound 3ai in DMSO-d₆

Figure S44 The ¹³C NMR Spectrum of Compound 3aj in DMSO-d₆

Figure S46 The ¹³C NMR Spectrum of Compound 3ak in DMSO-d₆

Figure S48 The ¹³C NMR Spectrum of Compound 3al in DMSO-d₆

Figure S50 The ¹³C NMR Spectrum of Compound 3am in DMSO-d₆

Figure S52 The ¹³C NMR Spectrum of Compound 3an in DMSO-d₆

Figure S54 The ¹³C NMR Spectrum of Compound 3ao in DMSO-d₆

Figure S56 The ¹³C NMR Spectrum of Compound 3ap in DMSO-*d*₆

Figure S58 The ¹³C NMR Spectrum of Compound 3aq in DMSO-d₆

Figure S60 The ¹³C NMR Spectrum of Compound 3ar in DMSO-d₆