Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Study of Adsorption-Oxidative Degradation for PAHs over Organic- Inorganic hybrid layered hydrotalcite

Huimin Zhang^a, Jinhua Liang^{b, *}, Yang Xu^a, Yitao Gu^b, Tianyi Yang^a, Chaofei Peng^a

and Prof. Xiaoqian Ren^{a, *}

^{*a*} College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing China, 211816

^b College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing China, 211816,

† Electronic supplementary information (ESI) available.

Corresponding authors:

Tel.: +86 18915906233 (Xiaoqian Ren); +86 13770598601 (Jinhua Liang).

E-mail address: xqren@njtech.edu.cn (Xiaoqian Ren); jhliang@njtech.edu.cn (Jinhua Liang).

Contents

Fig. S1. Standard curve of Nap and PA.

Fig. S2. N₂ adsorption/desorption isotherm of catalysts (a) and Pore size distribution curves (b).

Fig. S3. Degradation of Nap and PA

(a) Nap oxidized by H_2O_2 ; (b) Nap oxidized by $Na_2S_2O_8$; (c) Nap oxidized by O_3 ;

(d) PA oxidized by H_2O_2 ; (e) PA oxidized by $Na_2S_2O_8$; (f) PA oxidized by O_3 .

Fig. S4. Pseudo-first-order kinetic equation for catalytic degradation of Nap and PA

(a) Nap oxidized by H₂O₂; (b) Nap oxidized by Na₂S₂O₈; (c) Nap oxidized by O₃;

(d) PA oxidized by H_2O_2 ; (e) PA oxidized by $Na_2S_2O_8$; (f) PA oxidized by O_3 .

Sch. S1. Degradation mass spectrometry (a) Nap and (b) PA.

Method of measurement of ozone concentration:

The determination mechanism is that the strong oxidant ozone reacts with aqueous solution of potassium iodide to produce free iodine, and the ozone is reduced to oxygen, which makes the free iodine appear in color. Starch is used as an indicator, and the reaction between free iodine and starch appears blue and purple. A certain concentration of sodium thiosulfate solution is used for titration. The reaction equation is as follows: Eq. 1 and Eq. 2:

$$O_3 + 2KI + H_2O \rightarrow O_2 + I_2 + 2KOH$$
⁽¹⁾

$$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_2O_6 \tag{2}$$

According to the standard curve was obtained by regression (shown in Fig. S1),

Fig. S1. Standard curve of Nap and PA.

Fig. S2. N₂ adsorption/desorption isotherm of catalysts (a) and Pore size distribution curves (b).

(a) Nap oxidized by H₂O₂; (b) Nap oxidized by Na₂S₂O₈; (c) Nap oxidized by O₃;
(d) PA oxidized by H₂O₂; (e) PA oxidized by Na₂S₂O₈; (f) PA oxidized by O₃.

Fig. S4. Pseudo-first-order kinetic equation for catalytic degradation of Nap and PA
(a) Nap oxidized by H₂O₂; (b) Nap oxidized by Na₂S₂O₈; (c) Nap oxidized by O₃;
(d) PA oxidized by H₂O₂; (e) PA oxidized by Na₂S₂O₈; (f) PA oxidized by O₃.

Sch. S1. Degradation mass spectrometry (a) Nap and (b) PA.