Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Tuning of Hydrophobic-Hydrophilic Balance for the Development of a Salt-Tolerant

and Protease-Resistant Lipopeptide AMP

Monikha Chetia,¹ Tanumoy Sarkar,¹ Maitery Yadav¹, Chandrima Dey,² Pradeep Kumar

Sundaravadivelu,² Rajkumar Thummer,² Sunanda Chatterjee^{1*}

1. Department of Chemistry,

Indian Institute of Technology, Guwahati,

Guwahati, Assam-781039.

2. Department of Biosciences and Bioengineering,

Indian Institute of Technology,

Guwahati, Guwahati, Assam-781039.

Corresponding Author: Dr. Sunanda Chatterjee, Department of Chemistry, Indian Institute of Technology, Guwahati, IITG, Guwahati, Assam-781039. Email for correspondence: <u>sunanda.c@iitg.ac.in</u>

Contents

Figures	Pages	
S1-S6. Analytical HPLC traces of P8-P18	3-5	
S7-S12. MALDI-MS spectra of P8-P18	6-9	
S13-S18. ¹ H NMR spectra of P8-P18	10-15	
S19. FTIR spectra of P8-P18	16	
S20. PXRD spectra of P8-P18	16	
S21 Bar diagrams showing MIC99% of P8- P18 in the absence of salt	17	
S22. Bar diagrams showing MIC _{99%} of P16 and P18 in the presence of salt	17	
S23. Time kinetics of the bactericidal activity of P16 and P18	18	
S24. Bar diagrams MTT assay of P8, P10, P12, P14 on HEK 293 cells and	19	
P16, P18 on HeLa cells		
S25. Microscopy images of P16 and P18 treated HEK293 cells	20	
S26. Digital images and bar diagram for haemolytic assay	21	
S27. Growth curve of MRSA	20	
S28a-e. MALDI-MS analysis of enzymatic action on P16	21-25	
S29a-e. MALDI-MS analysis of enzymatic action on P18	26-30	
Table S1. 2θ and d-spacing values from PXRD	30	

Figure S1. Analytical HPLC trace for P8.

Figure S2. Analytical HPLC trace for P10.

Figure S3. Analytical HPLC trace for P12.

Figure S4. Analytical HPLC trace for P14.

Figure S5. Analytical HPLC trace for P16.

Figure S6. Analytical HPLC trace for P18.

Figure S7. MALDI-TOF mass spectra of **P8**. Calc. $(M+H)^+ = 754.9793$ Da; Obs. $(M+H)^+ = 755.048$ Da.

Figure S8. MALDI-TOF mass spectra of **P10**. Calc. $(M+H)^+ = 782.5650$ Da; Obs. $(M+H)^+ = 783.188$ Da, $(M+Na)^+ = 805.295$ Da.

Figure S9. MALDI-TOF mass spectra of **P12**. Calc. (M+H)⁺= 810.5963 Da; Obs. (M+H)⁺ = 810.663 Da.

= 840.262 Da, (M+Na)⁺ =861.392 Da.

Figure S11. MALDI-TOF mass spectra of **P16**. Calc. $(M+H)^+ = 867.6589$ Da; Obs. $(M+H)^+ = 867.896$ Da.

Figure S12. MALDI-TOF mass spectra of P18. Calc. $(M+H)^+ = 894.6902$ Da; Obs. $(M+2H)^+ = 895.885$ Da.

Figure S13. ¹H NMR of **P8** in D₂O at room temperature. ¹H NMR (600 MHz, D₂O). 0.79-0.90 (9Hs: 3Hs from long-chain -CH₃ and 6Hs from two -CH₃ of Val), 1.2-1.4 (13 Hs: 10Hs from long-chain, 3Hs from -CH₃ of Ala), 1.6-1.8 (14 Hs: 8Hs from Arg, 4Hs from Lys, 2H from long-chain), 2.05-2.2 (3Hs: 1Hs from Val, 2Hs from K), 2.9-3.1 (6Hs: 4Hs from Arg, 2Hs from Lys), 4.06-4.2 (5Hs, 5 α H).

Figure S14. ¹H NMR of **P10** in D₂O at room temperature. ¹H NMR (600 MHz, D₂O). 0.8-0.89 (9Hs: 3Hs from long-chain -CH₃ and 6Hs from two -CH₃ of Val), 1.2-1.4 (17 Hs: 14Hs from long-chain, 3Hs from -CH₃ of Ala), 1.6-1.8 (14 Hs: 8Hs from Arg, 4Hs from Lys, 2H from long-chain), 2.06-2.2 (3Hs: 1Hs from Val, 2Hs from K), 2.9-3.1 (6Hs: 4Hs from Arg, 2Hs from Lys), 4.07-4.2 (5Hs, 5 α H).

Figure S15. ¹H NMR of **P12** in D₂O at room temperature. ¹H NMR (600 MHz, D₂O). 0.8-0.92 (9Hs: 3Hs from long-chain -CH₃ and 6Hs from two -CH₃ of Val), 1.2-1.4 (21 Hs: 18Hs from long-chain, 3Hs from -CH₃ of Ala), 1.7 (14 Hs: 8Hs from Arg, 4Hs from Lys, 2H from long-chain), 2.05-2.2 (3Hs: 1Hs from Val, 2Hs from K), 2.9-3.1 (6Hs: 4Hs from Arg, 2Hs from Lys), 4.06-4.2 (5Hs, 5 α H).

Figure S16. ¹H NMR of **P14** in D₂O at room temperature. ¹H NMR (600 MHz, D₂O). 0.83-0.93 (9Hs: 3Hs from long-chain -CH₃ and 6Hs from two -CH₃ of Val), 1.2-1.4 (27 Hs: 24Hs from long-chain, 3Hs from -CH₃ of Ala), 1.7 (13 Hs: 8Hs from Arg, 4Hs from Lys, 1H from Val,), 2.05-2.2 (2Hs: 2Hs from K), 2.9-3.1 (6Hs: 4Hs from Arg, 2Hs from Lys), 4.1-4.3 (5Hs, 5 α H).

Figure S17. ¹H NMR of **P16** in D₂O at room temperature. ¹H NMR (600 MHz, D₂O). 0.79-0.89 (9Hs: 3Hs from long-chain -CH₃ and 6Hs from two -CH₃ of Val), 1.22-1.3 (29 Hs: 26Hs from long-chain, 3Hs from -CH₃ of Ala), 1.6-1.8 (14 Hs: 8Hs from Arg, 4Hs from Lys, 2H from long-chain), 2.06-2.25 (3Hs: 1Hs from Val, 2Hs from K), 2.9-3.18 (6Hs: 4Hs from Arg, 2Hs from Lys), 4.1-4.3 (5Hs, 5 α H).

Figure S18. ¹H NMR of **P18** in D₂O at room temperature. ¹H NMR (600 MHz, D₂O). 0.83-0.93 (9Hs: 3Hs from long-chain -CH₃ and 6Hs from two -CH₃ of Val), 1.25-1.3 (33 Hs: 30Hs from long-chain, 3Hs from -CH₃ of Ala), 1.8 (14 Hs: 8Hs from Arg, 4Hs from Lys, 2H from long-chain), 2.07-2.2 (3Hs: 1Hs from Val, 2Hs from K), 2.9-3.2 (6Hs: 4Hs from Arg, 2Hs from Lys), 4.1-4.3 (5Hs, 5 α H).

Figure S19. FTIR spectra of P8-P18.

Figure S20. PXRD spectra of P8-P18.

Figure S21. MIC_{90%} of **P8-P18** against a) *P. aeruginosa*, b) *K. pneumonia*, c) *S. aureus* in the absence of salt by Micro broth dilution assay. 10 μ M Polymixin B and buffer were taken as positive and negative controls respectively.

Figure S22. MIC_{99%} of **P16** and **P18** against a) *P. aeruginosa*, b) *K. pneumonia*, c) *S. aureus* in the presence of salt by Micro broth dilution assay. 10 μ M polymixin B and buffer were taken as positive and negative controls respectively.

Figure S23. Time kinetics of the bactericidal activity of **P16** and **P18** at their respective MIC99% against *P. aeruginosa* cells. *P. aeruginosa* cells were treated with **P16** and **P18** for different time intervals and cells were spread on NA plate for CFU count after overnight incubation at 37 °C. Bacterial killing percentage was calculated from CFU count of the plate in comparison to the control plate. (a) Negative control (no peptides added) (b) Positive control plate (10 μ M Polymyxin B treated cells), (c) plates treated with **P16** at time points 3, 10, 15 and 20 min, respectively and (d) plates treated with **P18** at time points 3, 10, 15 and 20 min, respectively.

Figure S24. MTT assay of a) P8, P10, P12 and P14 on HEK293 cell line and b) P16 and P18 on HeLa cell line. Cells were treated with increasing concentrations of peptides and their viability was measured by monitoring the absorbance at 570 nm. All the experiments were performed in triplicates.

Figure S25. Microscopy images of HEK 293 cells treated with incremental concentrations (0-160 μ M) of different lipopeptides **P8-P18** (Scale bar: 100 μ m).

Figure S26. a) Digital images represent haemolytic assay for **P16** and **P18** against human RBC at different peptide concentrations (5, 10, 25, 50, 100, 200 μ M), b) Bar diagram showing the % haemolysis for **P16** and **P18** against different concentrations of the peptides. Buffer and Triton-X 100 treated as negative and positive control.

Figure S27. Growth curve of MRSA bacterial strain

Figure S28a. Control MALDI-TOF mass spectra of P16 for enzymatic action study. Calc. $(M+H)^+ = 867.6589 \text{ Da}; \text{ Obs. } (M+H)^+ = 867.840 \text{ Da}.$

Figure S28b. MALDI-TOF mass spectra of P16 in presence of proteinase K at 15 mins. Calc. $(M+H)^+ = 867.6589 \text{ Da}; \text{ Obs. } (M+H)^+ = 867.900 \text{ Da}.$

Figure S28c. MALDI-TOF mass spectra of **P16** in presence of proteinase K at 1 hr. Calc. $(M+H)^+ = 867.6589 \text{ Da}$; Obs. $(M+H)^+ = 867.874 \text{ Da}$. m/z 484.357 corresponds to $(M+2H^+)$ of the fragment C₁₆-AR.

Figure S28d. MALDI-TOF mass spectra of **P16** in presence proteinase K at 3 hr. Calc. $(M+H)^+$ = 867.6589 Da; Obs. $(M+H)^+$ = 867.884 Da. m/z 484.347 corresponds to $(M+2H^+)$ of the fragment C₁₆-AR.

Figure S28e. MALDI-TOF mass spectra of P16 in presence of proteinase K at 6 hr. Calc. $(M+H)^+ = 867.6589 \text{ Da}$; Obs. $(M+H)^+ = 867.884 \text{ Da}$. m/z = 484.357 corresponds to $(M+2H^+)$ of the fragment C₁₆-AR.

Figure S29a. Control MALDI-TOF mass spectra of P18 for enzymatic action study. Calc. $(M+2H)^+ = 895.6902Da$; Obs. $(M+2H)^+ = 895.915 Da$.

Figure S29b. MALDI-TOF mass spectra of P18 in presence of proteinase K at 15 min. Calc. $(M+2H)^+ = 895.6902$ Da; Obs. $(M+2H)^+ = 895.399$ Da.

Figure S29c. MALDI-TOF mass spectra of P18 in presence of proteinase K at 1 hr. Calc. $(M+2H)^+ = 895.6902 \text{ Da}; \text{ Obs. } (M+2H)^+ = 895.917 \text{ Da}.$

Figure S29d. MALDI-TOF mass spectra of P18 in presence of proteinase K at 3 hr. Calc. $(M+2H)^+ = 895.6902 \text{ Da}; \text{ Obs. } (M+2H)^+ = 895.912 \text{ Da}.$

Figure S29e. MALDI-TOF mass spectra of P18 in presence of proteinase K at 6 hr. Calc. $(M+2H)^+ = 895.6902 \text{ Da}; \text{ Obs. } (M+2H)^+ = 895.929 \text{ Da}.$

Table S1	. 2θ an	d d-spa	acing v	values	from	PXRD
----------	---------	---------	---------	--------	------	------

Peptides	P8	P10	P12	P14	P16	P18
20	20.75	20.88	20.96	21.78	23.028	23.7
d spacing (Å)	4.27	4.24	4.241	4.07	3.85	3.8

30