Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Bromination of organic spacer impacts on the structural arrangement, phase transitions, optical and electrical properties of hybrid halide compound:[(CH₃)₃N(CH₂)₃Br]₂PdBr₄

Mohamed Saadi^a, Imen dakhlaoui^a, Fadhel Hajlaoui^b, Nidhal Drissi^c, Mustapha Zighrioui^d, Fethi Jomni^a, Nathalie Audebrand^e, Marie Cordier^e, Karoui Karim^{f,d,*}

^aUniversité de Tunis El Manar, Laboratoire LMOP, LR99ES17, El Manar, 2092 Tunis, Tunisia.

^bLaboratoire Physico-chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax, Tunisia

^cDepartment of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

^dGREMAN UMR, 7347-CNRS, CEA, INSACVL, Université de Tours, Blois, France

^eUniv Rennes, CNRS, INSA Rennes, ISCR (Institut des Sciences Chimiques de Rennes) -UMR 6226, F-35000 Rennes, France

^fLaboratoire des Caractérisations Spectroscopiques et Optique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax, Tunisia.

*Corresponding Authors' E-mail: karouikarim36@yahoo.com

Table of Content:

Figure S1. Plot of the Le Bail fit of powder X-ray diffraction pattern recorded at 293 K for $[(CH_3)_3N(CH_2)_3Br]_2PdBr_4$: orthorhombic space group *Pbca*, lattice parameters of a = 9.1496(1)Å, b = 14.5376(2)Å, c = 17.4081(2)Å; Rp = 3.99, Rwp = 5.33, Rexp = 2.89.

Figure S2. Packing structure of the $[(CH_3)_3N(CH_2)_3Br]_2PdBr_4$ compound along the *b* and *c*-axes.

Figure S3. Hydrogen-bonding interactions for [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Figure S4. Molecular structure of $[(CH_3)_3N(CH_2)_3Br]_2PdBr_4$ highlighting the hydrogenbonding interactions between the $[(CH_3)_3N(CH_2)_3Br]^+$ cations and the bromine atoms.

Figure S5. Raman spectra of $[(CH_3)_3N(CH_2)_3Br]_2PdBr_4$ at room temperature before heating, after cooling and at 403K.

Figure S6. Evolution of Raman spectra vs temperature for [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Figure S7. Variation of the position of the vibration modes as function temperature of [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Table S1. Selected bond distances (Å) and angles (°) for [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Table S2. Hydrogen-bonding geometry (Å, °) for [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Figure S1. Plot of the Le Bail fit of powder X-ray diffraction pattern recorded at 293 K for $[(CH_3)_3N(CH_2)_3Br]_2PdBr_4$: orthorhombic space group *Pbca*, lattice parameters of *a* = 9.1496(1)Å, *b* = 14.5376(2) Å, *c* = 17.4081(2) Å; Rp = 3.99, Rwp = 5.33, Rexp = 2.89.

Figure S2. Packing structure of the $[(CH_3)_3N(CH_2)_3Br]_2PdBr_4$ compound along the *b* and *c*-axes.

Figure S3. Hydrogen-bonding interactions for [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Figure S4. Molecular structure of $[(CH_3)_3N(CH_2)_3Br]_2PdBr_4$ highlighting the hydrogenbonding interactions between the $[(CH_3)_3N(CH_2)_3Br]^+$ cations and the bromine atoms.

Figure S5. Raman spectra of [(CH₃)₃N(CH₂)₃Br]₂PdBr₄ at room temperature before heating, after cooling and at 403K.

Figure S6. Evolution of Raman spectra vs temperature for [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Figure S7. Variation of the position of the vibration modes as function temperature of $[(CH_3)_3N(CH_2)_3Br]_2PdBr_4.$

Table S1. Selected bond distances (Å) and angles (°) for [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Pd1—Br1	2.4358 (4)	C6—N1—C5	108.1 (3)
$Pd1$ — $Br1^{(i)}$	2.4358 (4)	C6—N1—C4	109.5 (3)
Pd1—Br2	2.4415 (4)	C5—N1—C4	109.0 (3)
$Pd1$ — $Br2^{(i)}$	2.4415 (4)	C6—N1—C3	111.4 (3)
$Br1^{(i)}$ —Pd1—Br1	180.0	C5—N1—C3	107.4 (3)
$Br1^{(i)}$ —Pd1— $Br2^{(i)}$	89.806 (15)	C4—N1—C3	111.2 (3)
$Br1$ — $Pd1$ — $Br2^{(i)}$	90.194 (15)	C2—C1—Br3	111.7 (3)
Br1 ⁽ⁱ⁾ —Pd1—Br2	90.195 (15)	C1—C2—C3	111.7 (3)
Br1—Pd1—Br2	89.805 (15)	C2—C3—N1	114.3 (3)
Br2 ⁽ⁱ⁾ —Pd1—Br2	180.0	Br3—C1—C2—C3	62.4 (4)
Br3—C1	1.963 (4)	C1-C2-C3-N1	174.1 (3)
N1—C6	1.489 (5)	C6—N1—C3—C2	60.9 (4)
N1C5	1.491 (5)	C5—N1—C3—C2	179.1 (3)
N1C4	1.494 (5)	C4—N1—C3—C2	61.6 (4)
N1—C3	1.520 (4)		
C1—C2	1.508 (5)		
C2—C3	1.517 (5)		

Symmetry codes: (i) -x+2, -y, -z.

<i>D</i> —H··· <i>A</i>	D —Н	Н…А	D····A	D —Н···A
C1—H1 A ···Br2 ⁽ⁱⁱ⁾	0.99	2.99	3.849 (4)	146
C1—H1 <i>B</i> ····Br1	0.99	3.12	3.841 (4)	131
C2—H2 B ····Br1 ⁽ⁱⁱⁱ⁾	0.99	3.08	3.897 (4)	140
C3—H3 A ····Br2 ^(iv)	0.99	2.95	3.899 (4)	160
C3—H3 <i>B</i> ····Br2	0.99	3.02	3.962 (4)	159
C4—H4 A ···Br1	0.98	3.10	3.844 (4)	134
C4—H4 C ···Br2 ^(v)	0.98	3.00	3.914 (4)	157
C5—H5 A ···Br1 ^(v)	0.98	3.13	3.819 (4)	129
C5—H5 <i>C</i> ···Br2	0.98	3.06	3.976 (4)	156
C6—H6 <i>B</i> ····Br1 ^(vi)	0.98	2.97	3.705 (4)	133
C6—H6 C ···Br2 ^(v)	0.98	3.07	3.979 (4)	154

Table S2. Hydrogen-bonding geometry (Å, °) for [(CH₃)₃N(CH₂)₃Br]₂PdBr₄.

Symmetry codes:(ii) -x+3/2, -y, z+1/2; (iii) x-1/2, y, -z+1/2; (iv) -x+1, -y, -z; (v) x-1/2, -y+1/2, -z; (vi) x-1, y, z