Supporting Information

6-nitrobenzimidazole ligand modified two new polymolybdate-based metal-organic complexes with excellent capacitive and electrocatalytic performances
Ju-Ju Liang \& Yu-Chen Zhang, Zhi-Han Chang,Yong-Zhen Chen,Ke-Ke Chen, Jun-Jun Lu, Xiu-Li Wang*
College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China

Email: wangxiuli@bhu.edu.cn

Synthesis of $\left(\mathbf{N H}_{4}\right)_{6}\left[\mathrm{TeMo}_{6} \mathbf{O}_{24} \cdot 7 \mathbf{H}_{\mathbf{2}} \mathbf{O}\right.$

$\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was synthesized by dissolving $2.73 \mathrm{~g} \mathrm{Na}_{2} \mathrm{TeO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $10.5 \mathrm{~g}\left(\mathrm{NH}_{4}\right) \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in 150 mL deionized water, heated and evaporated to 100 ml under stirring conditions. After cooling and standing for 5 days, a colorless solid $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was obtained ${ }^{1}$.

Preparations of 1-2-modified carbon paste electrodes (1-/2-CPE)

The nano-graphite powder $(0.1 \mathrm{~g})$ and the complex 1 or $2(0.015 \mathrm{~g})$ were accurately weighed and mixed thoroughly with grinding in a mortar for 45 min , and an appropriate amount of paraffin oil was added dropwise to the ground powder and stirred to a paste-like mixture. The above substances were transferred to a glass tube with an inner diameter of 3 mm , compacted with a copper rod, and the electrode surface was polished to smooth with a weighing paper.

Table S1 The bond lengths and bond angles of complex $\mathbf{1}$

Table S1 The bond lengths and bond angles of complex 1		
Complex $\mathbf{1}$		
$\mathrm{Cu}-\mathrm{Ol} \mathrm{\# 2}$	$2.382(3)$	Cul-O1W

Cu1-N2	$1.981(3)$	$\mathrm{Cu}-\mathrm{O} 2$	$2.379(2)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.936(2)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.988(3)$
O3-Cu1-O1W	$90.31(10)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 1 \# 2$	$158.71(9)$
O3-Cu1-O2	$83.48(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~W}$	$176.47(12)$
O3-Cu1-O1\#2	$87.65(10)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$104.11(11)$
O3-Cu1-N1	$87.81(11)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 1 \# 2$	$94.80(12)$
O3-Cu1-N2	$173.87(11)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1 W$	$90.94(12)$
O1W-Cu1-O2	$78.62(10)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{O} 2$	$90.89(11)$
O1W-Cu1-O1\#2	$82.13(10)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1 \# 2$	$98.47(11)$
		$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$91.24(13)$

Symmetry code for $\mathbf{1 : \# 1 1 - x , - y , 2 - z}$

Table S2 The bond lengths and bond angles of complex 2

Table S2 The bond lengths and bond angles of complex 2			
	Complex 2		
Cu1-O1W	$1.994(4)$	Cu1-O2W	$2.372(5)$
Cu1-O1	$1.974(4)$	Cu1-N2	$2.006(5)$
Cu1-N1	$2.004(5)$	O1-Cu1-N2	$87.68(18)$
O1-Cu1-O1W	$179.4(2)$	O1-Cu1-O2W	$86.81(18)$
N1-Cu1-N2	$172.83(19)$	N1-Cu1-O2W	$91.7(2)$
N2-Cu1-O2W	$92.0(2)$	O1W-Cu1-N1	$94.1(2)$
O1W-Cu1-N2	$91.8(2)$	O1W-Cu1-O2W	$93.0(2)$
O1-Cu1-N1	$86.38(18)$		
Symmetry code for 2: \#1 1-x,1-y,1-z			

Fig. S1. The IR spectra of complexes $\mathbf{1 - 2}$.

Fig. S2 The PXRD patterns of complexes 1-2.

Fig. S3 The plots of peak currents vs. scan rates of complexes $\mathbf{1 - 2}$.

1. C. I. Cabello, Botto, I. L., Cabrerizo, F., González, M. G., \& Thomas, H. J., Adsorption Science \& Technology, 2000, 18(7), 591-608.
