Supporting Information of

Polymethylacrylic acid-induced fabrication of hollow $hZrO_2/g-C_3N_4$ composite photocatalysts : Study on solar photocatalytic performance and mechanism insight

Weilong Zhang¹, Xian Li¹, Huan Cheng¹, Jie Yang², Jumei Li^{1*}

¹Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China ²School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China

* Corresponding author E-mail: jumeili2006@163.com

Fig. S1. (a) Photocatalytic degradation plots of MB over $g-C_3N_4$, $ZrO_2/g-C_3N_4$ under full-spectrum illumination, (b) the curves of $-\ln(C/C_0)$ against the reaction time.

The conduction band (CB) and valence band (VB) positions of $g-C_3N_4$ and ZrO_2 could be determined using the following functions[1]:

$$E_{VB} = \chi - E_e + 0.5E_g \tag{1}$$
$$E_{CB} = E_{VB} - E_g \tag{2}$$

where E_e is the energy of free electrons on the hydrogen scale (4.5 eV vs NHE), E_g is the band gap, E_{CB} and E_{VB} are CB and VB potentials, and χ is the absolute electronegativity of the semiconductor. The χ values of g-C₃N₄ and ZrO₂ are 4.73 and 5.91 eV based on the literature[2], respectively.

Sample	$\Box \Box \chi (eV)$	$E_{CB}(eV)$	E _{VB} (eV)	$E_{g}(eV)$
g-C ₃ N ₄	4.73	□ □ -1.19	1.71	2.9
ZrO ₂	5.91	□ □-0.91	3.79	4.7

Table S1 The χ , E_{CB} , E_{VB} and E_g for g-C₃N₄ and ZrO₂.

References

- [1] S. Ghattavi, A. Nezamzadeh-Ejhieh, A visible light driven AgBr/g-C₃N₄ photocatalyst composite in methyl orange photodegradation: focus on photoluminescence, mole ratio, synthesis method of g-C₃N₄ and scavengers, Compos. B. Eng. 183 (2020) 107712.
- [2] K. Zhang, M. Zhou, C. Yu, K. Yang, X.X. Li, W.X. Dai, J. Guan, Q. Shu, W.Y. Huang, Construction of S-scheme g-C₃N₄/ZrO₂ heterostructures for enhancing photocatalytic disposals of pollutants and electrocatalytic hydrogen evolution, Dyes Pigm. 180 (2020) 108525.