Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024 ## Supporting Information ## Effect of H₂S co-feeding on the performance of Fe/SiO₂ catalyst for isomerization and dehydrogenation of C₅-monoolefin Fumiya Karasawa^a, Ryo Watanabe^{a,*}, Priyanka Verma^b, Yuichi Miyagi^c, Hikaru Yamada^c, Setsuko Miyanari^c, Choji Fukuhara^{a,*} ^aDepartment of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, ^bDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India ^cResearch & Development Center, Fuel & Petrochemical Technology Group, Cosmo Oil Co., Ltd., 1134–2 Gongendo, Satte, Saitama 340–0193, Japan Figure S-1 N_2 adsorption-desorption isotherms of SiO_2 support. Figure S-2 STEM image and element maps of the (b) silicon (Si), (c) iron (Fe), and (d) oxygen (O) components in the as-made Fe/SiO_2 catalyst. Figure S-3 STEM image and element maps of the (b) silicon (Si), (c) iron (Fe), and (d) oxygen (O) components in the used Fe/SiO_2 catalyst.