Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

A difluoroboron compound with latent fingerprint detection and inkless writing based on aggregation-induced emission enhancement and mechanofluorochromic behavior

Shufan Yang^{1,a}, Jiazhuang Tian^{1,a}, Bangcui Zhang^a, Yanhua Yang^a*, Xiangguang Li^{a**}, Shulin Gao^{a***}, Lin Shao^b, Fumin Li^{c****}

^a School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, P. R. China.

^b Chromatographic Analysis Center, Dali Institute for Food Control, Dali, 671000, P. R. China.

^c Physical and Chemical Inspection Center, Dali Institute for Food Control, Dali, 671000, P. R. China.

Content

Figure			S1				NMR
spectra			•••••			2	
Figure							S2
HRMS······			•••••				5
Figure S3 FT	IR·····		•••••			•••••	3
Figure S4 Lip	opert-Ma	ataga plot					4
Figure	S 5	Absorption	spectra	in	THF	and	H ₂ O
mixtures·····			4				
Figure S6 SE	M image	es of TPA-Py-Br BF ₂ in	n THF/H₂O mi	xture (f _w =	80%)	•••••	4
Figure S7 DS	SC curves	of before and after	grinding				5
Figure S8 τ α	of before	and after grinding…					5
Figure S9 Φ_i	of befor	e and after grinding					6
Figure S10 N	lormalize	ed emission spectra	of before and	after grind	ling, and af	ter heating	6
Figure S11 T	he emiss	sion wavelength upo	n treated by §	grinding-fu	ming repea	tedly	7
Figure S12 T	he mole	cular conformation i	n front view a	ind unit cel	l in single o	rystal	7
C					C C	·	
Table	S1	Photophysical	data	in	va	irious	organic
solvents			8				-
Table S2. Cr	ystal dat	a and structure refin	ement······		•••••		9

* Correspond author, E-mail address: yh_yangkmu@126.com (Y. Yang) 276090212@qq.com (X. Li) 778144294@qq.com (S. Gao)

810944654@qq.com (F. Li)

¹ The authors contribute equally to this paper.

al calculations

Figure S1 ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of TPA-Py-Br BF₂ in DMSO-d₆.

Figure S2 HRMS of TPA-Py-Br BF₂.

Figure S4 Lippert-Mataga plot of TPA-Py-Br BF_2 in different solvents.

Figure S5 Absorption spectra of TPA-Py-Br BF₂ in THF and H₂O mixtures (c = 1.0×10^{-5} mol/L)

Figure S6 SEM images of **TPA-Py-Br BF₂** in THF/H₂O mixture ($f_w = 80\%$)

Figure S7 DSC curves of TPA-Py-Br BF₂ before (up) and after grinding (down), respectively.

Fit Range Fitting Rang	p 125 to	1023	cha	ins 🕅 Ove	erride low limit	*	Fit Range Fitting Ran	g 124 to	1023	ch	ans 🔲 Ove	erride low limit
$R(t) = B_1$	$e^{\left(-t/\tau_{1}\right)}+B$	$_{2}e^{(-t/2)}$	$(\tau_2) + B_3 e$	$(-t/\tau_3) + B$	$_{4}e^{(-t/_{\tau_{4}})}$		$R(t) = B_1$	$e^{(-t/\tau_1)} + B$	2e ^{(-t/}	$(r_2) + B_3 \epsilon$	$e^{(-t/\tau_2)} + B_z$	$_{4}e^{(-t/_{\tau_{4}})}$
Fix Value/ns	Std. Dev / ns	Fix	Value	Std. Dev	Rel %		Fix Value / ns	Std. Dev / ns	Fix	Value	Std. Dev	Rel %
τ ₁ 🔲 4.7691	0.02252	B ₁	9614.493	31.9619	93.37		τ ₁ 🔲 4.5560	0.19157	B ₁	5605.150	450.5794	35.82
τ ₂ 🔲 16.3640	0.73776	B ₂	198.916	21.4503	6.63		τ ₂ 🗐 9.4988	0.40439	B ₂	4234.391	448.7906	56.42
τ ₃		B3				M	τ3 🗐 38.8745	4.12340	B3 🗌	142.200	26.9658	7.75
τ4		B4					τ		B ₄			
		A 📃	10.146						A 🕅	14.991		
		χ² :	1.126						χ ² :	1.063		
Copy Results To Clipbo Copy As Text Copy	ard As Image	F	esults Window Add to existin	g window 💿 Cre	ate new window		Copy Results To Clipbo Copy As Text Copy	ard y As Image	R	esults Window) Add to existin	g window 💿 Cre	ate new window
Print Lopy	As Image	0) Add to existin	g window 🧿 Lre	sate new window		Copy As Text Cop	y As Image	C	Add to existin	ıg window 🧕 Cre	ate new window

Figure S8 τ of TPA-Py-Br BF₂ before (up) and after grinding (down), respectively.

Figure S9 Φ_f of **TPA-Py-Br BF**₂ before (up) and after grinding (down), respectively.

Figure S10 Normalized emission spectra (λ_{ex} = 365 nm) of TPA-Py-Br BF₂ before and after grinding, and after heating, respectively.

Figure S11 The emission wavelength of TPA-Py-Br BF_2 upon treated by grinding and fuming with CH_2Cl_2 repeatedly.

Figure S12 The molecular conformation of TPA-Py-Br BF_2 in front view and unit cell in single crystal.

	• •	•	-	-	
Compound	Solvents	Δf^{a}	λ _{abs} /nm	λ _{em} /nm	$\Delta v_{\rm st}$ ^b /10 ³ cm ⁻¹
	<i>n</i> -hexane	-0.0468	274, 331, 345, 401	457	3.057
TPA-Py-Br BF ₂	PhCl	0.0222	337, 416	527	5.063
	CH ₂ Cl ₂	0.2185	272, 335, 415	562	6.044
	DMF	0.2756	334, 413	604	7.657
	DMSO	0.2545	273, 336, 416	610	7.645

Table S1 Photophysical data of compound TPA-Py-Br BF₂ in various organic solvents

 $^{a}\Delta f$ refered to solvent polarity parameters, it was calculated as follows:

$$\Delta f = \frac{\varepsilon \cdot 1}{2\varepsilon + 1} \cdot \frac{n^2 \cdot 1}{2n^2 + 1}$$

where ϵ was the static dielectric constant, n was the optical refractive index of the solvent. ^b $\Delta v_{st} = \Delta v_{abs} - \Delta v_{em}$

Table S2. Crystal data and structure refinement for TPA-Py-Br BF₂.

Identification code	cu_20230614_YS_KMXY_SF_4_0m
Empirical formula	$C_{30}H_{21}BBrF_2N_3O$
Formula weight	568.22
Temperature/K	193.00
Crystal system	monoclinic
Space group	P21/c
a/Å	8.2149(4)
b/Å	33.6377(13)
c/Å	9.9837(4)
α/°	90
β/°	90.872(3)
γ/°	90
Volume/ų	2758.5(2)
Z	4

ρ _{calc} g/cm ³	1.368
µ/mm ⁻¹	2.374
F(000)	1152.0
Crystal size/mm ³	$0.13 \times 0.11 \times 0.1$
Radiation	CuKα (λ = 1.54178)
20 range for data collection/°	9.24 to 136.414
Index ranges	-9 ≤ h ≤ 9, -39 ≤ k ≤ 39, -12 ≤ l ≤ 12
Reflections collected	26871
Independent reflections	4979 [R _{int} = 0.0775, R _{sigma} = 0.0623]
Data/restraints/parameters	4979/75/438
Goodness-of-fit on F ²	1.090
Final R indexes [I>=2σ (I)]	$R_1 = 0.0791$, $wR_2 = 0.1822$
Final R indexes [all data]	R ₁ = 0.1121, wR ₂ = 0.2004
Largest diff. peak/hole / e Å ⁻³	0.42/-0.34

Theoretical calculations

Quantum chemical calculation results were studied from the density functional theory (DFT) using B3LYP/6-31G(d) and TD-CAM-B3LYP/6-31G(d) level for the ground and excited states^[1], respectively, through the Gaussian 09 program package^[2], and the frontier molecular orbital and electrostatic potential (ESP) surface were obtained by Multiwfn 3.8(dev)^[3,4] and visual molecular dynamic (VMD) software^[5], respectively.

References

[1] Yanai T, Tew D P, Handy N C. A new hybrid exchange–correlation functional using the Coulombattenuating method (CAM-B3LYP) [J]. Chemical physics letters, 2004, 393(1-3): 51-57.

[2] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A

P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16 Rev. A.03 [M]. Wallingford, CT; Gaussian, Inc. 2016.

[3] Zhang J, Lu T. Efficient evaluation of electrostatic potential with computerized optimized code [J]. Physical Chemistry Chemical Physics, 2021, 23(36): 20323-20328.

[4] Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer [J]. Journal of computational chemistry, 2012, 33(5): 580-592.

[5] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics [J]. Journal of molecular graphics, 1996, 14(1): 33-38.