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Figure S1 1H NMR, 13C NMR and 19F NMR spectra of TPA-Py-Br BF2 in DMSO-d6.



3

Figure S2 HRMS of TPA-Py-Br BF2.

Figure S3 FTIR of TPA-Py-Br and TPA-Py-Br BF2.
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Figure S4 Lippert-Mataga plot of TPA-Py-Br BF2 in different solvents.

Figure S5 Absorption spectra of TPA-Py-Br BF2 in THF and H2O mixtures (c = 1.0 × 10-5 mol/L)
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Figure S6 SEM images of TPA-Py-Br BF2 in THF/H2O mixture (fw = 80%)

Figure S7 DSC curves of TPA-Py-Br BF2 before (up) and after grinding (down), respectively.
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Figure S8 τ of TPA-Py-Br BF2 before (up) and after grinding (down), respectively.

Figure S9 Φf of TPA-Py-Br BF2 before (up) and after grinding (down), respectively.
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Figure S10 Normalized emission spectra (λex = 365 nm) of TPA-Py-Br BF2 before and after 
grinding, and after heating, respectively.

Figure S11 The emission wavelength of TPA-Py-Br BF2 upon treated by grinding and fuming with 
CH2Cl2 repeatedly.
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Figure S12 The molecular conformation of TPA-Py-Br BF2 in front view and unit cell in single 
crystal.

Table S1 Photophysical data of compound TPA-Py-Br BF2 in various organic solvents
Compound Solvents f a λabs/nm λem/nm vst b/103 cm-1

n-hexane -0.0468 274, 331, 345, 401 457 3.057
PhCl 0.0222 337, 416 527 5.063

CH2Cl2 0.2185 272, 335, 415 562 6.044
DMF 0.2756 334, 413 604 7.657

TPA-Py-Br BF2

DMSO 0.2545 273, 336, 416 610 7.645
a f refered to solvent polarity parameters, it was calculated as follows:
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where ε was the static dielectric constant, n was the optical refractive index of the solvent.
b vst = vabs - vem 

Table S2. Crystal data and structure refinement for TPA-Py-Br BF2.

Identification code cu_20230614_YS_KMXY_SF_4_0m

Empirical formula C30H21BBrF2N3O

Formula weight 568.22

Temperature/K 193.00

Crystal system monoclinic

Space group P21/c

a/Å 8.2149(4)

b/Å 33.6377(13)

c/Å 9.9837(4)

α/° 90

β/° 90.872(3)

γ/° 90

Volume/Å3 2758.5(2)

Z 4
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ρcalcg/cm3 1.368

μ/mm-1 2.374

F(000) 1152.0

Crystal size/mm3 0.13 × 0.11 × 0.1

Radiation CuKα (λ = 1.54178)

2Θ range for data collection/° 9.24 to 136.414

Index ranges -9 ≤ h ≤ 9, -39 ≤ k ≤ 39, -12 ≤ l ≤ 12

Reflections collected 26871

Independent reflections 4979 [Rint = 0.0775, Rsigma = 0.0623]

Data/restraints/parameters 4979/75/438

Goodness-of-fit on F2 1.090

Final R indexes [I>=2σ (I)] R1 = 0.0791, wR2 = 0.1822

Final R indexes [all data] R1 = 0.1121, wR2 = 0.2004

Largest diff. peak/hole / e Å-3 0.42/-0.34

Theoretical calculations

Quantum chemical calculation results were studied from the density functional theory (DFT) 
using B3LYP/6-31G(d) and TD-CAM-B3LYP/6-31G(d) level for the ground and excited states[1], 
respectively, through the Gaussian 09 program package[2], and the frontier molecular orbital and 
electrostatic potential (ESP) surface were obtained by Multiwfn 3.8(dev)[3,4] and visual molecular 
dynamic (VMD) software[5], respectively.
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