Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information for:

On the mechanochemical synthesis of C-scorpionates with an oxime moiety

and their application in the

copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction

Carla Gomes.^{*a*} Mariana Costa.^{*a*} Susana M. M. Lopes.^{*a*} Bernardo Albuquerque Nogueira.^{*a*} Rui Fausto.^{*ab*} José A. Paixão.^{*c*} Teresa M. V. D. Pinho e Melo.^{*a*} Luísa M. D. R. S. Martins^{*d*} and Marta Pineiro.^{*a**}

- a. University of Coimbra. CQC-IMS and Department of Chemistry. 3004-535. Coimbra. Portugal
- b. Faculty of Sciences and Letters. Department of Physics. Istanbul Kultur University. Ataköy Campus. Bakirköy 34156. Istanbul. Turkey
- c. University of Coimbra. CFisUC and Department of Physics. 3004-516 Coimbra. Portugal
- d. Centro de Química Estrutural. Institute of Molecular Sciences. Departamento de Engenharia Química. Instituto Superior Técnico. Universidade de Lisboa. Av. Rovisco Pais 1. 1049-001 Lisboa. Portugal

Table of contents

1.	Synthesis of oximes		2
2.	Synthesis of C-scorpionates		7
3.	Copper C-scorpionates complexes		5
4.	Infrared and Raman characterization		17
5.	Characterization of the CuAAC products	5	21
6.	Sustainability metrics		27
7.	XRD supplementary Material		29
8.	References		40

1. Synthesis of oximes

1-(1-*p***-Chlorophenyl-1***H***-1,2,3-triazol-4-yl)-2,2-dibromoethanone: A solution of bromine (9 mmol. 0.46 mL) in glacial acetic acid (3 mL) was added dropwise to a solution of 1,2,3-triazolylethanone (4.5 mmol. 1 g) in glacial acetic acid (15 mL). The mixture was heated at 40 °C for 40 h. After this time. the mixture was allowed to cool to room temperature. The solid in suspension was filtered and washed with ethanol 50% and dried under vacuum. Compound T2** was obtained as a white solid in 91% yield (4.10 mmol. 1.54 g). mp 174.6-175.0 °C (from ethyl acetate/hexane); IV (ATR) v 833. 1012. 1258. 1497. 1527. 1699. 2934 and 3146 cm⁻¹. ¹H NMR δ

(CDCl₃) 7.18 (s. 1H). 7.55-7.59 (m. 2H). 7.72-7.76 (m. 2H). 8.68 (s. 1H); ¹³C NMR δ (CDCl₃) 38.8. 122.1. 125.9. 130.4. 134.5. 136.1. 142.6. 180.1; HRMS (ESI) *m/z*: [M+H⁺] Calcd. for C₁₀H₇N₃OBr₂Cl 377.8639; found 377.8636.

Figure S1. ¹H NMR of 1-(1-p-Chlorophenyl-1H-1,2,3-triazol-4-yl)-2,2-dibromoethanone (400 MHz, CDCl₃).

Figure S2. ¹³C NMR of 1-(1-p-Chlorophenyl-1H-1,2,3-triazol-4-yl)-2,2-dibromoethanone (100 MHz, CDCl₃).

Figure S3. High-Resolution Mass Spectrum of 1-(1-p-Chlorophenyl-1H-1,2,3-triazol-4-yl)-2,2-dibromoethanone (ESI-TOF).

1-(1-*p***-Chlorophenyl-1***H***-1,2,3-triazol-4-yl)-2,2-dibromoethanone oxime (4b)**: Hydroxylamine hydrochloride (18 mmol. 1.25 g) was added to a solution of 1-(1-*p*-Chlorophenyl-1*H*-1,2,3-triazol-4-yl)-2,2-dibromoethanone (3 mmol. 1.13 g) in ethanol (50 mL). The mixture was stirred at room temperature. monitored by TLC until all the 1-(1-*p*-Chlorophenyl-1*H*-1,2,3-triazol-4-yl)-2,2-dibromoethanone was consumed (ca. 5 d). The solvents were evaporated. The crude product was triturated with water, filtered, washed with water and dried under vacuum. Oxime **4b** was obtained as a white solid in 81% yield (2.43 mmol. 0.96 g). mp 169.7-171.0 ^oC (from

ethanol); IR (ATR) v 718. 826. 972. 1031. 1093. 1253. 1499 and 3249 cm⁻¹; ¹H NMR δ (Acetone- d_6) 7.38 (s. 1H). 7.68-7.72 (m. 2H). 8.05-8.09 (m. 2H). 9.35 (s. 1H). 12.00 (s. 1H); ¹³C NMR δ (Acetone- d_6) 67.6. 122.5. 126.9. 129.9. 134.3. 135.6. 135.8. 145.6; HRMS (ESI-TOF) m/z: [M+H⁺] Calcd. for C₁₀H₈N₄OBr₂Cl 392.8748; found 392.8736.

Figure S4. ¹H NMR of 11-(1-*p*-chlorophenyl-1*H*-1,2,3-triazol-4-yl)-2,2-dibromoethanone oxime (**4b**) (400 MHz, DMSO- d_6).

Figure S5. ¹³C NMR of 1-(1-*p*-chlorophenyl-1*H*-1,2,3-triazol-4-yl)-2,2-dibromoethanone oxime (**4b**) (100 MHz, DMSO- d_6).

Figure S6. High-Resolution Mass Spectrum of 1-(1-*p*-chlorophenyl-1*H*-1,2,3-triazol-4-yl)-2,2-dibromoethanone oxime (**4b**) (ESI-TOF).

2. Synthesis of C-scorpionates NOH N= Ή N: 3a 38491 1H_MMC1 -11.977 -3.374 --8.637 2.509 2.505 -6.466 -6.460 -6.455 -7.714 -7.710 -7.399 -7.393 2.94 - ₹ 3.14 - ₹ Image: state state

Figure S7 ¹H-NMR of compound 3a (400 MHz, DMSO-d₆).

Figure S8. NOESY Spectrum

Figure S9 ¹H-NMR of compound **3b** (400 MHz, DMSO-d₆).

Figure S10 ¹³C-NMR of compound 3b. (100 MHz, DMSO-d₆).

Figure S11 HRMS spectrum of compound 3b.

Figure S12 ¹H-NMR of compound 5a (400 MHz, DMSO-d₆).

Figure S13 ¹H-NMR of compound 5b (400 MHz, DMSO-d₆).

Figure S14 ¹³C-NMR of compound 5b (100 MHz, DMSO-d₆).

Figure S15 HRMS spectrum of compound 5b.

3. Copper C-Scorpionates

Figure S16 HRMS spectrum of compound 6a.

HRMS of **6b** obtained in solution

HRMS of **6b** obtained via mechanochemistry

Figure S17. HRMS spectrum of compound 6b.

Figure S18. HRMS spectrum of compound 9

4. Infrared and Raman characterization

Table S1. Experimental and calculated bands (B3LYP/6-311++G(d.p). (scale factor 0.977) from the infrared and Raman spectra of 2,2,2-tris(1*H*-pyrazol-1-yl)acetaldehyde oxime (**3a**) (frequencies in cm⁻¹) with the proposed vibration.

IR		Raman		Approximate description
Ехр	Calc	Ехр	Calc	Approximate description
3289	3468	3271	3436	vOH
3148	3214	3144	3214	vCH
3130	3202	3133	3186	vCH
3126	3183	3128	3183	vCH
3117	3164	3117	3164	vCH
3111	3160	3113	3160	vCH
3105	3102	3103	3102	vCH
1654/1637	1696	1633	1684	vC=N
1518/1509	1517	1518	1516	vCN(ring)
1423	1441	1507	1477	δΟΗ
1417	1418	1419	1416	vCC(ring)
1384	1384	1386	1391	vCC(ring)
1318	1321	1327	1327	vbreathing ring
1269	1289	1266	1284	δCH
1245	1244	1249	1243	vCN
1227	1227	1228	1227	vCN

1213	1218	1211	1207	δCH (ring)
1200	1195	1202	1198	δCH (ring)
1125	1116	1125	1117	δ CH (ring)
1098/1085	1087	1096/1083	1086	δ CH (ring)
1055	1072	1052	1073	δ CH (ring)
1045	1041	1043	1041	δ CH (ring)
1015	1025	1007	1023	δCH (ring)
-	-	982	977	vCN (ring)
960	962	959	963	δCH (ring)
949	939	945	940	vbreathing ring
916	921	914	921	γCH
905	913	905	913	δ CC (ring)
862	888	861	864	γCH (ring)
853	859	-	-	δCN
844	844	849	844	γCH (ring)
773/758	747	-	-	γОН
747	745	-	-	γОН
714	739	742	741	γCH (ring)
-	-	702	681	γОН
662	658	659	658	γCN (ring)
N.I.	-	654	653	γCN (ring)
N.I.	-	610	609	γCN (ring)
N.I.	-	603	606	γCN (ring)
N.I.	-	416	414	δCC=N
N.I.	-	406	406	γCC=Ν
N.I.	-	387	373	δC=NO
N.I.	-	361	366	δ CN (ring)
N.I.	-	355	352	vbreathing CN (rings)
N.I.	-	283	278	γCN (ring)
N.I.	-	268	276	γCN (ring)
N.I.	-	258	258	γCN (ring)
N.I.	-	159	182	δCC=N
N.I.	-	117	114	γ CN (ring)
N.I.	-	92	97	γ CN (ring)
N.I.	-	65	64	γ CN (ring)

Abbreviations: v. elongation; δ . in-plane flexion; γ . out-of-plane flexion; N.I. not investigated.

Table S2. Experimental and calculated bands (B3LYP/6-311++G(d.p). (scale factor 0.977) from the infrared and Raman spectra of **6a** complex (frequencies in cm^{-1}) with the proposed vibration.

IF	R	Rar	man	Approximate description
Ехр	Calc	Exp	Calc	Approximate description
1684	1680	1691	1680	vC=N
1560	1602	1573	1602	vC=O
1519	1522	1520	1522	vCC(ring)
1436	1436	1435	1436	scCH ₃
1418	1417	1417	1423	vCC(ring)
1200	1389	1207	1389	δΟΗ
1388	1364	1387	1364	rockCH ₃

1321	1329	1338	1329	rockCH₃
-	-	1315	1315	vCN(ring)
1263	1267	1278	1267	δΟΗ
1245	1247	1245	1247	δCH
1201	1211	1210	1211	vbreathing ring
1151	1196	1149	1196	δ CH (ring)
1118	1117	1119	1117	vbreathing ring
1098	1098	1097	1098	δ CH (ring)
1083	1090	1083	1090	δ CH (ring)
1045	1047	1046	1047	δ CH (ring)
993	998	993	998	γCH ₃
961	962	959	962	γСН
914	916	915	913	vbreathing ring
874	864	849	864	γCH (ring)
776	753	772	753	γCH (ring)
N.I.	-	655	659	δΟϹΟ
N.I.	-	603	607	γΟϹϹ
N.I.	-	414	424	δርርΟ
N.I.	-	365	377	δC=NO
N.I.	-	288	299	vCu-OAc
N.I.	-	257	259	γCN (ring)
N.I.	-	223	241	γCN (ring)
N.I.	-	205	215	γΟϹϹ
N.I.	-	160	166	δርΝ
N.I.	-	154	154	vCu-OAc
N.I.	-	63	70	γCN (ring)

Abbreviations: v. elongation; δ . in-plane flexion; γ . out-of-plane flexion; N.I. not investigated.

Table S3. Experimental and calculated bands (B3LYP/6-311++G(d.p). (scale factor 0.977) from the infrared and Raman spectra of **6b** complex (frequencies in cm^{-1}) with the proposed vibration.

IR		Rar	nan	Approximate description	
Exp	Calc	Exp	Calc		
1636	1679	1637	1679	vCN	
1519	1521	1518	1527	vCC (ring)	
1459	1430	1434	1423	vCN (ring)	
1438	1415	1428	1409	vCC (ring)	
1407	1399	1404	1399	δΟΗ	
1381	1387	1382	1387	vCN (ring)	
1329	1334	1337	1334	vbreathing ring	
1321	1321	1318	1321	vbreathing ring	
1305	1318	1301	1318	vCN (ring)	
1275	1269	1274	1269	δΟΗ	
1244	1247	1245	1247	δCH	
1206	1231	1218	1231	vCN (ring)	
1195	1207	1193	1207	δ CH (ring)	
-	-	1136	1118	δ CH (ring)	
1110	1098	1110	1098	δ CH (ring)	
1106	1093	1104	1093	δ CH (ring)	

1080/1072	1067	1076/1067	1067	δ CH (ring)
1048	1051	1046	1051	δ CH (ring)
1028	1038	1021	1038	δ CH (ring)
1003	1013	1000	1013	vNO
988	952	985	952	γCH
948	940	945	940	δ CNN (ring)
920	914	917	914	δ CCC (ring)
869	861	871	861	γCH (ring)
858	856	853	850	γCH (ring)
762	749	762	749	γCH (ring)
745	736	742	736	δCC=N
N.I.	-	647	648	γCN (ring)
N.I.	-	635	637	γCN (ring)
N.I.	-	594	597	γCN (ring)
N.I.	-	565	482	δΟΗ
N.I.	-	425/407	422	γCCN
N.I.	-	392	394	δCC=N
N.I.	-	372	384	δC=NO
N.I.	-	325	324	vCuCl
N.I.	-	288/275	262	γCN (ring)
N.I.	-	228	234	γCN (ring)
N.I.	-	212	210	γCNO
N.I.	-	187	189	γCN (ring)
N.I.	-	178	163	γCN (ring)
N.I.	-	159	160	δCuCl
N.I.	-	114	123	δCuCl
N.I.	-	102	96	γCN (ring)
N.I.	-	79	81	γCN (ring)
N.I.	-	61	66	γCN (ring)

Abbreviations: v. elongation; δ . in-plane flexion; γ . out-of-plane flexion; N.I. not investigated.

Figure S19. Comparison between the IR (left) and Raman (right) experimental spectra of the (*E*)-2,2,2-tris(1*H*-pyrazol-1-yl)acetaldehyde oxime **3a** and the complexes **6a** and **6b**. obtained in solution.

5. Characterization of the CuAAC products

Figure S20. ¹H-NMR of compound **13** (400 MHz, CDCl₃).

Figure S21. ¹H-NMR of compound 14 (400 MHz, $CDCI_3$).

Figure S22. ¹H-NMR of compound 15 (400 MHz, CDCl₃).

Figure S23. ¹H-NMR of compound 16 (400 MHz, CDCl₃).

Figure S24. ¹H-NMR of compound **17** (400 MHz, CDCl₃).

Figure S25. ¹H-NMR of compound 18 (400 MHz, CDCl₃).

6. E-Factor and EcoScale Calculation

Table S4. EcoScale Penalty point calculation table

Pa	rameter	Penalty points				
1	Yield	(100 - %vield)/2				
2	Price of reaction components (to obtain 10 mmol of end product)					
	Inexpensive (< \$10)	0				
	Expensive (> \$10 and < \$50)	3				
	Very expensive (> \$50)	5				
3	Safety					
-	N (dangerous for environment)	5				
	T (toxic)	5				
	F (highly flammable)	5				
	F (emlosive)	10				
	E+ (avtramaly flammable)	10				
	T+ (extremely tonic)	10				
4	Technical samp					
•	Common setup	0				
	Instruments for controlled addition of chamicals ^b	1				
	Uncompational activation technique	5				
	Dracon aminmant > 1 atm ⁴	2				
	Arris additional monial alasmam	1				
	Any autoonal special glassware	1				
	(inert) gas atmosphere	1				
-	Giove box	3				
5	Temperature/time					
	Room temperature, < 1 h	0				
	Room temperature, < 24 h	1				
	Heating, <1 h	2				
	Heating, >1 h	3				
	Cooling to 0 °C	4				
	Cooling, < 0 °C	. 5				
6	Workup and purification	3%. 				
	None 0	0				
	Cooling to room temperature	0				
	Adding solvent	0				
	Simple filtration	0				
	Removal of solvent with bp < 150 °C	0				
	Crystallization and filtration	1				
	Removal of solvent with bp > 150 °C	2				
	Solid phase extraction	2				
	Distillation	3				
	Sublimation	3				
	Liquid-liquid extraction*	3				
	Classical Chromatography	10				
10						

"Based on the hazard warning symbols. "Dropping funnel, syringe pump, gas pressure regulator, etc. "Microwave irradiation, ultrasound or photochemical activation, etc. "scCO₃, high pressure hydrogenation equipment, etc. "If applicable, the process includes drying of solvent with desiccant and filtration of desiccant.

Table S5. Data for the trichloroacetaldehyde oxime synthesized as described by Brintzinger and Titzmann¹

SYNTHESIS OF TRICHLEO OXIME

	E-	FACTOR						E	COSCALE						
grams of REACT	ANTS														
Compound Mi Cloral hydrat hydroxylamir CaCl2 water	w de 165,4 69,49 147,01 18	nsity mol 1,496 1 11,11	mL 2 1 49684 11111	578 200	ms 330,8 69,49 220 200	mol to prepa 0,02816901 0,01408451 0,02107742 0,15649452	re 10 mmol of product	reaction condit liquid-liquid ext evaporation remove the exc Yield 71%	ions: 1 h 50 °C traction cess of chloral t	through de	estilation at 1	Price (SIGM. 50G 34,60 e 100G 33,10 1250G 26,80	A-ALDRICH 20 uros Euros euros	10 highly toxi 10 highly toxi 10 highly toxi toxic 5	c c + 3 environr
grams of PROD	ист					DETERMIAN	TION of PRICE of REACT	ANTS							
Product Chioral	oxime					solids					RESULT				
M	w	molp	roduct	510	ms			mass bottle M	Im (g/mol) pric	ce (euro)	price (euro/r	nmmol to pro	Cost to prod	uce 10 mmol p	f product
	162,39		0,71		115,2969	Chloral hydra	ite	50	163,4	34,6	0,1144368	0,02816901	0,00322414		
						Hydroxylamii	ne.	100	69,49	33,1	0,02300119	0,01408451	0,00032396		
E-FACTOR 6,11438831						Liquids	volume bottl density	mass bottle M	Im (g/mol) pric	ce (euro)	RESULT price (euro/r	mmol)			
						Water			18		0	0	0		
						penailty poir	yield price 14,5	Safety Ti 0 30	echnical setTer 0	nperature 2	: Workup/Pur 6	ITOTAL 52,5			
						ECOSCALE (1 47,5	00-penalty points)								

Table S6. Data for synthesis of compound 3a (this work) and the previously described by Pinho e Melo².

NIHESIS	OF Ins	PTRAZO	E-EACTO	OR									FCOSCA	F				
			- nacin	-									LUUSCA					
grams of RI	EACTAN	TS AND	SOLVENT	S this wo	rk			mmol to prepar	e		P	rice		sds INFO			reaction con	ditions: 1 h 5
Com pound	Mw		density	mmol		mL	grams	10 mmol of prod	duct		(5	GIGMA-ALD	RICH 2023)					
oxime		162,4			3,2		0,51968	18,8235294	1		2.2					and the second second	Mechanoch	emistry (25Hz
yrazole		68,1			10,5		0,71505	61,7647058	8		5	G 20,20€		Highly toxic	: 10 + Harmful	to aquatic life	e add ethyl ad	etate
122005		106			16		1,696	94,11/64/0	0		5	00G 42,00t		10000 5			evaporation	
arams of Ri	EACTAN	TS AND	SOLVENT	S Pinho e	Melo													
om pound	Mw		density	mmol		mL	grams											
xime		162,4			3,5		0,5684	12,5718390	8								16 h, rt	
yrazole		68,1			10,5		0,71505	37,7155172	4								filtration	
Na2CO3		106			17,5		1,855	62,859195	4								evaporation	
DCM		84,93	1,	33 548,0	98434	35	46,55	1968,74437	5		1	L 148,00€		Highly toxic	10		flash chrom	atography
		_						1200000000										
rams of PF	RODUCT	т						DETERMINATIO	N of PRICE of RI	EACTAN	s							
	yield	= 2	product M	w mmol	1 606	grams		solids				and heately			RESULT			10
his work		22	257		1,090	0,4303808					n	ass bottle	(INIM (E/mo) price (euro)	price (euroy	r mmol to pro	Cast to proc	uce to mmoi
inno e me	IC	6/	231	(,)	2,704	0,/103232		Burazola				5	68	1 20	0 275124	61 7647059	16 0020520	
								Na2003				500	10	6 4	2 0.008904	94 1176471	0.8380235	
E-FACTOR																	0,0000200.	
his work	5.715	599209																
inho e Mel	lc 68.3	365965						Liquids							RESULT			
									volume bottl	density	п	ass bottle	(Mm (g/mo) price (euro)	price (euro/	mmol)		
								DCM	1000	1	.33	1330	84,9	3 14	8 0,00945086	1968,74438	18,606321	3
									all states	yield .	P	nce	Safety	lechnical s	el lemperatur	e workup/Pur	TUTAL	
								penalty points	Disha a Mala		5,5	2	4	0 1	2 1	10	48,3	
									Pinno e Meic		0,5	0	3				23,:	,
								ECOSCALE (100-	penalty points)									
								this Work	51,5									
								Pinho e Melo	46,5									

Table S7. Data for the synthesis of **6b (this work)** and the previously described synthesis of tris(pyrazol-1-yl)methane described by Pettinari³

Table S8. Data for synthesis of compound 13 (this work) and as previously described by Martins.⁴

CUAAC reaction																		
		E-FACT	OR						E	COSCAL	E							
grams of REACT	ANTS AND	SOLVENTS	this work			mmol to p	repare	P	rice		sds INFO			reaction con	ditions:			
Compound Mw	v	density	mmol	mL	grams	10 mmol o	/f product	(SIGMA-ALDRI	CH 2023)								
enzyl bromi	171,04		0,43	6	0,05	11,655011	.7	2	5G 24,30€		Toxicity 5							
butinol	70,09		0,479	6	0,03361516	12,820512	2B	5	IG 55,40€		Toxic 5, flan	nable 5		mech 3h				
dium azide	65,01		0,479	6	0,0311788	12,820512	28	1	0G 26,30C		Hyghly toxic	10, harmful aq	uatic life 5	cromatograp	any			
italyst	391,7		0,0065	4	0,00256172	0,1748251	.7											
ame of REACT	ANTS AND	CONVENTS	Martine 201											MM/12505	an mint			
moound Ma		density	mmol	mi	Frame									bobbe rater	filtered off x	rashed with no	troloum other an	d dried in
navi bromi	171.04		0	3	0.051312	12 658227	8							and the standard	the set of	and here here		
autinol	70.09		03	3	0.0231297	13,924050	06											
dium azide	65.01		0.3	3	0.0214533	13,924050	06											
talyst	833.94		0.004		0.00375273	0.1898734	12											
0	18		41 666666	7 07	0.75	1758.087	12											
athanol	22.04	0.791	10 120275	0,7	5 0.594	797 25002	-		77 904		Acute towici	by 10 bigbly flag	Di eldemo					
ams of PRODU yiel is work nho e Melc	JCT Id 78 79	product Mw 203,25 203,25	r mmol 5 0,37408 5 0,23	mgrams 8 0,0760333 7 0,0481702	5	DETERMIN solids Benzyl bro 3-butinol	MTION of PRICE of	f REACTANT:	s nass bottle M 25 5	Im (g/mol) 171,04 70,05	price (euro) 24,3 53,4	RESULT price (euro/m 0,16623088 0,7763972	rmmol to pro 11,6530117 12,8205128	Cost to produ 1,93765594 9,95637436	uce 10 mmol	pf product		
						Sodium az	ide		10	65,01	26,3	0,1709763	12,8205128	2,19200385				
ACTOR						Catalyst							0,17482517					
is work 0,5 artins 2018 28	9696936					Liquids	uniume botti d	ensity n	nass hottle M		price (euro)	RESULT	mall					
						Methanol	1000	0.792	792	32.04	77.9	0.003151409	782,250036	2 46518987				
						penalty po	y in this Work M;artins 201	ield p 11 10,5	rice St D D	afety 30 30	Technical se	et Temperature, 2 1 2 2	"Workup/Pur 10 0	iTOTAL 54 64,5				
						ECOSCALE	(100-penalty point	ntsj										
						this Work	46											
						Pinho e Me	417 355											

7. XRD supplementary material

Table S9. CRYSTAL DATA AND DETAILS OF THE STRUCTURE DETERMINATIONFOR: CSG503B_AP 21/NR = 0.04

CRYSTAL D	ΑΤΑ
FORMULA	C11 H11 N7 O
FORMULA WEIGHT	257.27
CRYSTAL SYSTEM	MONOCLINIC
SPACE GROUP	P21/N (NO. 14)
A. B. C [ANGSTROM]	10.2989(3) 9.5354(3) 12.3745(4)
ALPHA. BETA. GAMMA [DI	EG] 90 91.395(2) 90
V [ANG**3]	1214.87(7)
Z	4
D(CALC) [G/CM**3]	1.407
MU(MOKA) [/MM]	0.100
F(000)	536
CRYSTAL SIZE [MM]	0.16 X 0.18 X 0.25
DATA COLLEC	TION
TEMPERATURE (K)	293
RADIATION [ANGSTROM]	MOKA 0.71073
THETA MIN-MAX [DEG]	3.4. 27.5
DATASET	-13: 13 ; -12: 12 ; -16: 16
TOT UNIQ. DATA. R(INT)	114886. 2792. 0.047
OBSERVED DATA [I > 2.0 S	IGMA(I)] 2285
REFINEMEN	IT
NREF. NPAR	2792. 175
R. WR2. S	0.0353. 0.0975. 1.03
W = ^2^(FO^2^)+(0.0422P)^2^+0.3590P] WHERE P=(FO^2^+2FC^2^)/3'
MAX. AND AV. SHIFT/ERRO	DR 0.00. 0.00
MIN. AND MAX. RESD. DEI	NS. [E/ANG^3] -0.18. 0.20

Table S10. FINAL COORDINATES AND EQUIVALENT ISOTROPIC DISPLACEMENTPARAMETERS OF THE NON-HYDROGEN ATOMSFOR: CSG503B_AP 21/NR = 0.04

ATOM	X	Y	Z	U(EQ) [ANG^	2]
01	0.54282(10)	0.5910	1(10)	0.37986(8)	0.0442(3)
N1	0.48687(11)	0.45835	5(12)	0.38222(8)	0.0399(3)
N2	0.36140(10)	0.2465	7(11)	0.16577(8)	0.0333(3)
N3	0.29901(12)	0.35382	1(13)	0.11518(9)	0.0472(4)
N4	0.50228(9)	0.15852	(11)	0.30132(8)	0.0331(3)
N5	0.62023(10)	0.17497	7(13)	0.25636(8)	0.0416(3)
N6	0.29495(10)	0.24362	2(11)	0.34647(8)	0.0346(3)
N7	0.31050(12)	0.25073	3(15)	0.45530(9)	0.0518(4)
C1	0.40572(11)	0.26521	.(13)	0.27736(9)	0.0304(3)
C2	0.46467(12)	0.41014	l(13)	0.28988(9)	0.0345(3)
C3	0.25410(15)	0.2973	s(2) C).02448(11)	0.0554(5)
C4	0.28510(15)	0.1570)(2) C).01622(11)	0.0554(5)
C5	0.35341(14)	0.12596	6(16)	0.10844(11)	0.0446(4)
C6	0.67504(15)	0.05020)(18)	0.26689(12)	0.0522(5)
C7	0.59441(17)	-0.04567	7(18)	0.31614(14)	0.0587(5)
C8	0.48364(15)	0.02565	5(16)	0.33627(12)	0.0489(5)
C9	0.19168(15)	0.23615	5(17)	0.49122(12)	0.0528(5)
C10	0.10096(14)	0.2208	8(17)	0.40808(13)	0.0518(5)
C11	0.16907(12)	0.2266	1(15)	0.31600(11)	0.0411(4)

U(EQ) = 1/3 OF THE TRACE OF THE ORTHOGONALIZED U TENSOR

Table S11. HYDROGEN ATOM POSITIONS AND ISOTROPIC DISPLACEMENTPARAMETERSFOR: CSG503B_AP 21/NR = 0.04

ATOM	х	Y Z	U(ISO) [ANG	6^2]
H1	0.5577(17)	0.6139(19)	0.4548(15)	0.0660
H2	0.48416	0.46279	0.22912	0.0410
H3	0.20681	0.34655	-0.02806	0.0660
H4	0.26377	0.09650	-0.04044	0.0670
H5	0.38777	0.03922	0.12820	0.0530
H6	0.75812	0.02917	0.24391	0.0630
H7	0.61243	-0.13910	0.33201	0.0700
H8	0.40948	-0.00975	0.36788	0.0590
H9	0.17141	0.23616	0.56404	0.0630
H10	0.01178	0.20913	0.41408	0.0620
H11	0.13577	0.22013	0.24564	0.0490

THE TEMPERATURE FACTOR HAS THE FORM OF EXP(-T) WHERE T = 8*(PI**2)*U*(SIN(THETA)/LAMBDA)**2 FOR ISOTROPIC ATOMS

Table S12. (AN)ISOTROPICDISPLACEMENT PARAMETERSFOR: CSG503BAP21/NR = 0.04

ATOM U(1.1) OR U U(2.2) U(3.3) U(2.3) U(1.3) U(1.2) 01 0.0537(6) 0.0402(5) 0.0385(5) -0.0042(4) -0.0044(4) -0.0140(4) N1 0.0480(6) 0.0366(6) 0.0348(5) -0.0020(4) -0.0034(4) -0.0073(5) 0.0351(5) 0.0400(6) 0.0246(5) -0.0020(4) -0.0041(4) -0.0012(4) N2 0.0557(7) 0.0528(7) 0.0325(5) 0.0045(5) -0.0089(5) 0.0093(6) Ν3 0.0316(5) 0.0392(6) 0.0285(5) 0.0029(4) -0.0014(4) -0.0010(4) N4 N5 0.0340(5) 0.0584(7) 0.0325(5) 0.0024(5) 0.0037(4) 0.0036(5) N6 0.0315(5) 0.0453(6) 0.0271(5) -0.0040(4) 0.0006(4) -0.0058(4) 0.0475(7) 0.0808(9) 0.0273(5) -0.0059(5) 0.0044(5) -0.0191(6) Ν7 0.0298(5) 0.0383(6) 0.0231(5) -0.0011(4) -0.0018(4) -0.0025(5) C1 0.0364(6) 0.0399(7) 0.0270(5) 0.0005(5) -0.0010(4) -0.0048(5) C2 0.0520(8) 0.0839(12) 0.0297(7) 0.0027(7) -0.0110(6) 0.0053(8) C3 C4 0.0524(8) 0.0803(11) 0.0331(7) -0.0165(7) -0.0061(6) -0.0111(8) C5 0.0497(7) 0.0479(8) 0.0360(7) -0.0109(6) -0.0016(5) -0.0044(6) C6 0.0464(8) 0.0663(10) 0.0436(7) -0.0077(7) -0.0053(6) 0.0183(7) 0.0648(10) 0.0452(8) 0.0652(10) 0.0005(7) -0.0179(8) 0.0112(7) C7 0.0502(8) 0.0436(8) 0.0523(8) 0.0114(6) -0.0085(6) -0.0079(6) C8 0.0548(8) 0.0640(10) 0.0405(7) -0.0089(7) 0.0171(6) -0.0131(7) C9 0.0358(7) 0.0585(9) 0.0615(9) -0.0056(7) 0.0125(6) -0.0024(6) C10 C11 0.0316(6) 0.0478(8) 0.0437(7) -0.0030(6) -0.0018(5) -0.0013(5)

THE TEMPERATURE FACTOR HAS THE FORM OF EXP(-T) WHERE T = 8*(PI**2)*U*(SIN(THETA)/LAMBDA)**2 FOR ISOTROPIC ATOMS T = 2*(PI**2)*SUMIJ(H(I)*H(J)*U(I.J)*ASTAR(I)*ASTAR(J)). FOR ANISOTROPIC ATOMS. ASTAR(I) ARE RECIPROCAL AXIAL LENGTHS AND H(I) ARE THE REFLECTION INDICES.

Table S13. BOND DISTANCES (ANGSTROM)

	F	OR: CSG50	P 21/N	R = 0.04		
01	-N1	1.3906(15)	C3	-C4	1.380(3)	
N1	-C2	1.2476(15)	C4	-C5	1.359(2)	
01	-H1	0.961(19)	C6	-C7	1.386(2)	
N2	-N3	1.3531(16)	C7	-C8	1.356(2)	
N2	-C5	1.3527(18)	C9	-C10	1.381(2)	
N2	-C1	1.4547(15)	C10	-C11	1.354(2)	
N3	-C3	1.3186(19)	C2	-H2	0.9300	
N4	-C1	1.4483(15)	C3	-H3	0.9300	
N4	-C8	1.3539(18)	C4	-H4	0.9300	
N4	-N5	1.3575(14)	C5	-H5	0.9300	
N5	-C6	1.322(2)	C6 ·	-H6	0.9300	
N6	-N7	1.3540(15)	C7	-H7	0.9300	
N6	-C11	1.3511(16)	C8	-H8	0.9300	
N6	-C1	1.4570(15)	C9	-H9	0.9300	
N7	-C9	1.319(2)	C10	-H10	0.9300	
C1	-C2	1.5159(17)	C11	-H11	0.9300	

Table S14. BOND ANGLES	(DEGREE	S)
FOR: CSG503B_A	P 21/N	R = 0.04

01	-N1	-C2	112.50(10)	C6	-C7	-C8	105.40(15)
N1	-01	-H1	104.0(11)	N4	-C8	-C7	106.50(13)
N3	-N2	-C5	112.19(10)	N7	-C9	-C10	112.12(13)
C1	-N2	-C5	127.98(11)	C9	-C10	-C11	105.54(13)
N3	-N2	-C1	118.77(10)	N6	-C11	-C10	106.46(12)
N2	-N3	-C3	103.75(12)	N1	-C2	-H2	120.00
N5	-N4	-C1	116.86(10)	C1	-C2	-H2	120.00
N5	-N4	-C8	111.98(11)	N3	-C3	-H3	124.00
C1	-N4	-C8	128.37(11)	C4	-C3	-H3	124.00
N4	-N5	-C6	103.88(11)	C3	-C4	-H4	127.00
N7	-N6	-C1	120.09(10)	C5	-C4	-H4	127.00
N7	-N6	-C11	111.90(11)) N2	-C5	-H5	127.00
C1	-N6	-C11	127.80(10)	C4	-C5	-H5	127.00
N6	-N7	-C9	103.98(11)	N5	-C6	-H6	124.00
N2	-C1	-N4	107.85(9)	C7	-C6	-H6	124.00
N2	-C1	-C2	108.91(9)	C6	-C7	-H7	127.00
N4	-C1	-N6	108.91(9)	C8	-C7	-H7	127.00
N4	-C1	-C2	110.38(9)	N4	-C8	-H8	127.00
N6	-C1	-C2	112.72(10)	C7	-C8	-H8	127.00
N2	-C1	-N6	107.93(9)	N7	-C9	-H9	124.00
N1	-C2	-C1	119.57(11)	C10	-C9	-H9	124.00
N3	-C3	-C4	112.48(14)	C9	-C10	-H10	127.00
C3	-C4	-C5	105.37(14)	C11	-C10	-H10	127.00
N2	-C5	-C4	106.20(14)	N6	-C11	-H11	127.00
N5	-C6	-C7	112.21(14)	C10	-C11	-H11	127.00

Table S15. TORSION ANGLES (DEGREES)

FOR: CSG503B_A				P 21/N	R = 0.04	
01	-N1	-C2	-C1	178.99(10)		
C1	-N2	-N3	-C3	-170.19(11)		
C5	-N2	-N3	-C3	-0.99(15)		
N3	-N2	-C1	-N4	-162.11(10)		
N3	-N2	-C1	-N6	80.36(13)		
N3	-N2	-C1	-C2	-42.32(14)		
C5	-N2	-C1	-N4	30.60(16)		
C5	-N2	-C1	-N6	-86.92(15)		
C5	-N2	-C1	-C2	150.40(12)		
N3	-N2	-C5	-C4	1.09(16)		
C1	-N2	-C5	-C4	169.07(12)		
N2	-N3	-C3	-C4	0.51(16)		
C1	-N4	-N5	-C6	-164.22(11)		
C8	-N4	-N5	-C6	-1.53(14)		
N5	-N4	-C1	-N2	72.87(12)		
N5	-N4	-C1	-N6	-170.25(9)		
N5	-N4	-C1	-C2	-46.00(13)		
C8	-N4	-C1	-N2	-86.54(15)		
C8	-N4	-C1	-N6	30.35(16)		
C8	-N4	-C1	-C2	154.59(12)		
N5	-N4	-C8	-C7	1.71(16)		
C1	-N4	-C8	-C7	161.93(13)		
N4	-N5	-C6	-C7	0.76(16)		
C1	-N6	-N7	-C9	175.86(12)		
C11	-N6	-N7	-C9	0.68(16)		
N7	-N6	-C1	-N2	177.98(11)		
N7	-N6	-C1	-N4	61.15(14)		
N7	-N6	-C1	-C2	-61.70(15)		

Table S16. TORSION ANGLES (DEGREES) (CONTINUED)

FOR: CSG503B_A			P 21/N	R = 0.04		
C11	-N6	-C1	-N2	-7.68(17)		
C11	-N6	-C1	-N4	-124.52(13)		
C11	-N6	-C1	-C2	112.63(14)		
N7	-N6	-C11	-C10	-0.71(16)		
C1	-N6	-C11	-C10	-175.43(12)		
N6	-N7	-C9	-C10	-0.39(18)		
N2	-C1	-C2	-N1	166.71(11)		
N4	-C1	-C2	-N1	-75.07(14)		
N6	-C1	-C2	-N1	46.97(15)		
N3	-C3	-C4	-C5	0.13(18)		
C3	-C4	-C5	-N2	-0.71(16)		
N5	-C6	-C7	-C8	0.24(19)		
C6	-C7	-C8	-N4	-1.14(17)		
N7	-C9	-C10	-C11	0.0(2)		
C9	-C10	-C11	-N6	0.43(17)		

Table S17. CONTACT DISTANCES(ANGSTROM)

FOR: CSG503B_A P 21/N R = 0.04

01	.N1_D	3.0045(14) N6	.N1	2.8727(15)
01	.N7_D	2.9275(16) N6	.N3	3.0501(15)
01	.H2	2.3000	N6 .	C10	2.1666(18)
01	.H11_(2.6800	N6	.C5	3.2224(17)
01	.H7_A	2.7400	N6	.C8	2.8503(19)
01	.H6_B	2.6600	N7	.N4	2.9134(15)
N1	.N4	3.0346(15)	N7	.C2	3.0299(17)
N1	.N6	2.8727(15)	N7	.C8	3.175(2)
N1	.N7	2.8490(17)	N7	.C10	2.2401(19)
N1	.01_D	3.0045(14) N7	.N1	2.8490(17)
N1	.N1_D	3.0270(14) N7	.01_	_D 2.9275(16)
N2	.C8	3.2163(18)	C1	.C3	3.4765(18)
N2	.N5	2.9467(15)	C1	.C7	3.571(2)
N2	.C4	2.1682(18)	C1	.C4	3.5854(18)
N2	.C11	2.7559(16)	N1	.H1_[0 2.190(18)
N3	.N6	3.0501(15)	C1	.C10	3.5908(19)
N3	.C2	2.7737(16)	C1	.C9	3.4962(19)
N3	.C8_C	3.407(2)	C1	.C6	3.454(2)
N3	.C11	3.0983(18)	C2	.N3	2.7737(16)
N3	.C4	2.244(2)	C2 .	C11	3.5331(18)
N4	.C7	2.172(2)	C2 .	C11_C	3.5542(19)
N4	.N1	3.0346(15)	C2	.N7	3.0299(17)
N4	.C5	2.8224(17)	N2	.H2	2.5300
N4	.N7	2.9134(15)	N2	.H11	2.5600
N5	.C2	2.7928(17)	C2	.N5	2.7928(17)
N5	.C5	3.2978(18)	C3	.C1	3.4765(18)
N5	.C7	2.248(2)	N3 .	H11	2.6800
N5	.N2	2.9467(15)	C3	.C6_H	3.579(2)

Table S18. CONTACT DISTANCES(ANGSTROM) (CONTINUED)FOR: CSG503B_AP 21/NR = 0.04

N3	.H2	2.5600	C8	.N6	2.8503(19)
N3	.H8_C	2.5200	C8	.N7	3.175(2)
C3	.C5	2.178(2)	C9	.C11	2.177(2)
N4	.H5	2.6700	C9	.C1	3.4962(19)
C4	.N2	2.1682(18)	C10) .C1	3.5908(19)
C4	.C1	3.5854(18)	C10	.N6	2.1666(18)
N4	.H3_E	2.9500	C11	C5	3.3704(19)
N5	.H3_E	2.8000	C11	C9	2.177(2)
N5	.H9_F	2.5900	C11	C2	3.5331(18)
C5	.C3	2.178(2)	C11	.N3	3.0983(18)
C5	.C8	3.237(2)	C11	.C2_I	3.5542(19)
C5	.N4	2.8224(17)	C11	L .N2	2.7559(16)
C5	.N5	3.2978(18)	C1	.H8	2.8500
C5	.C11	3.3704(19)	C1	.H11	2.8300
C5	.N6	3.2224(17)	C1	.H5	2.8400
C6	.C1	3.454(2)	C2	.H1	2.960(18)
N6	.H8	2.7000	C3	.H8_C	2.8500
C6	.C3_E	3.579(2)	C3	.H5	3.0800
C6	.C8	2.182(2)	C3	.H10_F	3.0100
C7	.C1	3.571(2)	C4	.H10_F	2.9700
N7	.H7_G	2.9300	C5	.H3	3.0700
C7	.N4	2.172(2)	C5	.H11	2.9800
N7	.H1_D	2.162(18) CE	б.Н3_	_E 2.7300
N7	.H8	2.9000	C6	.H8	3.0900
C8	.C5	3.237(2)	C7	.H3_E	2.9200
C8	.C6	2.182(2)	C8	.H5	2.7400
C8	.N3_I	3.407(2)	C8	.H3_E	3.0700
C8	.N2	3.2163(18)	C8	.H6	3.0700

Table S19. CONTACT DISTANCES(ANGSTROM) (CONTINUED)FOR: CSG503B_AP 21/NR = 0.04

C9	.H1_D	3.011(18)	H5	.C10_I	3.0700
C9	.H7_G	3.0800	H6	.C8	3.0700
C9	.H11	3.0800	H6	.H7	2.4700
C10	.H5_C	3.0700	H6	.01_J	2.6600
C11	.H9	3.0700	H7	.01_K	2.7400
C11	.H2_I	3.0100	H7	.H6	2.4700
H1	.C2 2	2.960(18)	H7	.H8	2.4800
H1	.N1_D	2.190(19)) H7	.N7_G	2.9300
H1	.N7_D	2.162(18)) H7	.C9_G	3.0800
H1	.C9_D	3.011(18)	H8	.N6	2.7000
H2	.01	2.3000	H8	.N7	2.9000
H2	.N2	2.5300	H8	.C1	2.8500
H2	.N3	2.5600	H8	.C6	3.0900
H2	.C11_C	3.0100	H8	.H7	2.4800
H3	.C5	3.0700	H8	.N3_I	2.5200
H3	.H4	2.4600	H8	.C3_I	2.8500
H3	.N4_H	2.9500	H9	.C11	3.0700
H3	.N5_H	2.8000	H9	.H10	2.4600
H3	.C6_H	2.7300	H9	.N5_L	2.5900
H3	.C7_H	2.9200	H10	.H9	2.4600
H3	.C8_H	3.0700	H10	.H11	2.4700
H4	.H3	2.4600	H10	.C3_L	3.0100
H4	.H5	2.4800	H10	.C4_L	2.9700
H5	.N4	2.6700	H11	.N2	2.5600
H5	.C1	2.8400	H11	.N3	2.6800
H5	.C3	3.0800	H11	.C1	2.8300
H5	.C8	2.7400	H11	.C5	2.9800
H5	.H4	2.4800	H11	.C9	3.0800

Table S20.CONTACT DISTANCES(ANGSTROM) (CONTINUED)FOR: CSG503B_AP 21/NR = 0.04

H11 .H10 2.4700 H11 .O1_I 2.6800

Table S21. HYDROGEN BONDS (ANGSTROM. DEG)FOR: CSG503B AP 21/NR = 0.04

O1 -- H1 .. N1 0.961(19) 2.190(19) 3.0045(14) 141.7(15) 3_666

O1 -- H1 .. N7 0.961(19) 2.162(18) 2.9275(16) 135.7(14) 3_666

C8 -- H8 .. N3 0.9300 2.5200 3.407(2) 159.00 2_545

C9 -- H9 .. N5 0.9300 2.5900 3.4846(18) 161.00 4_455

TRANSLATION OF SYMMETRY CODE TO EQUIV.POS

8. References

- 1. H. Brintzinger and R. Titzmann, Chem. Ber., 1952, 85, 344.
- 2. T. M. V. D. Pinho e Melo, A. Lemos and C. Grosso, *Synlett*, 2014, **25**, 2868-2872.
- 3. D. Martini, M. Pellei, C. Pettinari, B. W. Skelton and A. H. White, *Inorg. Chim. Acta*, 2002, **333**, 72-82.
- 4. A. G. Mahmoud, L. M. D. R. S. Martins, M. F. C. Guedes da Silva and A. J. L. Pombeiro, *Inorg. Chim. Acta*, 2018, **483**, 371-378.