Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Material

Sustainable hierarchically porous carbons from bio-oil to remove emerging contaminant

Rubens Lucas de Freitas Filho¹, Lucas Coelho Oliveira¹, Ingrid Fernandes Silva², Vitor Fernandes¹, Ana Paula de Carvalho Teixeira¹.

¹ Departamento de Química, ICEx, Universidade Federal de Minas Gerais,

UFMG, Belo Horizonte, MG 31270-901, Brazil.

² Department of Colloid Chemistry, Max Planck Institute of Colloids and

Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476 Potsdam,

Germany.

1. Additional information: Materials and methods

Figure S1 - Schematic representation of the hierarchical porous carbon synthesis from bio-oil as biomass.

Figure S2 UV-Vis spectra of emerging contaminants (a) and analytical curve for the contaminants caffeine and paracetamol (b).

2. Experimental Section

2.1. Kinectis and Isotherms studies

The kinetic study was performed to PAR and CAF under same conditions of mass, volume and concentration as the contact test, between 1 minute and 24 hours. The pseudo-first-order, pseudo-second-order and Elovich models were applied to understand adsorption kinetics (Equations 1, 2 and 3 respectively)^{1–6}.

$$q_{t} = q_{e}(1 - e^{-KT}) \qquad (1)$$

$$q_{t} = \frac{q_{e}^{2}K_{2}t}{1 + q_{e}K_{2}t} \qquad (2)$$

$$q_{t} = \frac{1}{\beta}\ln(1 + \alpha\beta t) \qquad (3)$$

where t is time (min), K_1 is the pseudo-first order adsorption rate constant (min⁻¹), K_2 is the pseudo-second model adsorption rate constant (g.mg⁻¹.min⁻¹), q_e is the amount adsorbed at equilibrium (mg.g⁻¹), q_t is the amount adsorbed at time t (min). α and β are Elovich constants (mg.g⁻¹.min⁻¹) (g.mg⁻¹) respectively.

The isotherm study was performed under same conditions of mass, volume, stirring, with the variation of concentration from 10 ppm to 1000 ppm of CAF and PAR. The system was stirred for 3 h at 21 °C. The experimental data were fitted using Langmuir, Freundlich and Sips isotherms models (Equations 5, 6 and 7 respectively). ^{7–9}

$$q_{e} = \frac{q_{m}K_{L}C_{e}}{1 + K_{L}C_{e}} \quad (4)$$

$$q_{e} = K_{F}C_{e}^{1/n_{F}} \quad (5)$$

$$q_{e} = \frac{q_{m}K_{s}C_{e}^{1/ns}}{1 + K_{s}C_{e}^{1/ns}} \quad (6)$$

where q_e is the amount of contaminant adsorbed (mg.g⁻¹) at equilibrium, Q_m is the maximum adsorption capacity of a monolayer (mg.g⁻¹), K_L is the Langmuir constant (L.mg⁻¹), C_e is the concentration of contaminant at equilibrium (mg.L⁻¹), K_F (mg^{1-(1/n}_F).L^{1/n}_F.g⁻¹) is the Freundlich constant relating to the relative capacity of adsorption (mg.g⁻¹), n_F is a constant relating to the intensity of adsorption, K_S is the Sips adsorption constant (L.mg⁻¹)^{1/nS}, and $1/n_S$ is the Sips exponent (non-dimensional).

3. Supplementary Figures and Tables from the characterization

Tables

Table S1. Adjustment results from the BET method for all materials. Selecting range: 0.05 to 0.25 $p.p_0^{-1}$.

	S _{BET} /m². g ⁻¹	Intercept/g ⁻¹	Slope/g ⁻¹	R	C constant
Blank_800	0.993	4.45x10 ⁻²	3062.597	0.998	7.881
HPC_700	831.754	9.896x10 ⁻³	4.177	0.999	423.091
HPC_800	835.779	1.22x10 ⁻²	4.155	0.999	341.565
HPC_900	764.455	1.33x10 ⁻²	4.542	0.999	341.474

	Slope	Intercept	R	Micropore Area/m ² .g ⁻¹	External Area/m ² .g ⁻¹	Micropore Volume/cm ³ .g ⁻¹
Blank_800	0.102	-0.257	0.999	0	0.993	0
HPC_700	40.939	58.188	0.999	198.508	633.247	0.090
HPC_800	42.54	52.310	0.999	179.092	656.687	0.081
HPC_900	38.157	50.497	0.999	174.240	590.216	0.078

Table S2. Adjustment results from the t-plot method for all materials. Selecting range: 0.07 to 0.30 $p.p_0^{-1}$.

Table S3. Elemental analysis obtained by EDS of the synthesized materials.

Sample	%C	%O	%Fe	%Si	%K	%Zn	%CI	%S	%Ca	%AI
Blank_800	72.60	18.00	3.20	1.52	1.78	0.30	1.14	0.12	1.02	0.32
HPC_700	84.03	7.47	-	1.50	0.14	2.28	3.70	0.44	0.18	-
HPC_800	84.88	13.02	-	0.32	-	0.58	0.88	0.23	-	0.09
HPC_900	86.58	10.79	-	0.30	-	0.54	1.40	0.28	-	0.12
D 0/										

By %w:w

Table S4. Carbon, Nitrogen, Hydrogen and sulfur contents obtained by elemental analysis.

Sample	%C	%N	%Н	%S
Bio-oil	58.34 ± 0.34	1.10 ± 0,01	6.72 ± 0.04	0.16 ± 0,01

Table S5. Band D, G and $I_{\text{D}}/I_{\text{G}}$ ratio values for all materials obtained.

Sample	D band/cm ⁻¹	G band/cm ⁻¹	I_D/I_G
Blank_800	1351	1585	0.94
HPC_700	1328	1586	1.21
HPC_800	1328	1585	1.26
HPC_900	1327	1586	1.32

Sample	D Band /cm ⁻¹	G Band/cm ⁻¹	I_D/I_G	R ²	X ²
Blank_800	1337	1573	1.64	0.999	237.900
HPC_700	1327	1571	2.75	0.999	46.850
HPC_800	1326	1570	3.04	0.999	46.005
HPC_900	1324	1572	3.54	0.999	15.091

Table S6 D and G Band values, ID/IG ratio, and statistical parameters by Lorentz adjustment of HPCs synthesized from bio-oil.

Table S7 Results of mathematical adjustments obtained from the adsorption kinetics of contaminants.

Sample	Contaminant	Pseudo- First-Order (PFO)	PseudoSecond- Order (PSO)	Elovich
1100 700	Caffeine	$R^{2} = 0.991$ $X^{2} = 0.051$ $q_{e} = 8.638$ $k_{1} = 2.095$	$R^2 = 0.993$ $X^2 = 0.039$ $q_e = 8.694$ $k_2 = 0.752$	$R^{2} = 0.984$ $X^{2} = 0.087$ $\alpha = 3.492 \times 10^{28}$ $\beta = 8.395$
HPC_700	Paracetamol	$R^{2} = 0.984$ $X^{2} = 0.126$ $q_{e} = 10.248$ $k_{1} = 1.538$	$R^{2} = 0.995$ $X^{2} = 0.033$ $q_{e} = 10.394$ $k_{2} = 0.300$	$R^{2} = 0.983$ $X^{2} = 0.138$ $\alpha = 8.48 \times 10^{11}$ $\beta = 3.229$
	Caffeine	$R^{2} = 0.972$ $X^{2} = 0.051$ $q_{e} = 8.304$ $k_{1} = 0.242$	$R^{2} = 0.992$ $X^{2} = 0.0051$ $q_{e} = 8.576$ $k_{2} = 0.054$	$R^{2} = 0.885$ $X^{2} = 0.800$ $\alpha = 573.11$ $\beta = 1.409$
	Paracetamol	$R^{2} = 0.927$ $X^{2} = 0.732$ $q_{e} = 9.923$ $k_{1} = 0.185$	$R^{2} = 0.975$ $X^{2} = 0.251$ $q_{e} = 10.265$ $k_{2} = 0.034$	$R^2 = 0.913$ $X^2 = 0.868$ $\alpha = 238.76$ $\beta = 1.068$
HPC_900	Caffeine	$R^{2} = 0.983$ $X^{2} = 0.101$ $q_{e} = 8.291$ $k_{1} = 0.584$	$R^{2} = 0.992$ $X^{2} = 0.048$ $q_{e} = 8.538$ $k_{2} = 0.113$	$R^{2} = 0.898$ $X^{2} = 0.636$ $\alpha = 7.81 \times 10^{4}$ $\beta = 2.016$
	Paracetamol	$R^{2} = 0.974$ $X^{2} = 0.276$ $q_{e} = 10.339$ $k_{1} = 0.248$	$R^{2} = 0.987$ $X^{2} = 0.145$ $q_{e} = 10.649$ $k_{2} = 0.046$	$R^2 = 0.869$ $X^2 = 1.404$ $\alpha = 1139.1$ $\beta = 1.183$

R²: correlation coefficient. X²: Nonlinear Chi Square Test. k_1 : pseudo first-order constant (min⁻¹). k_2 : pseudo second-order constant (g mg⁻¹ min⁻¹); q_e: amount adsorved at equilibrium (mg.g⁻¹).

¹). α : Elovich constant (mg g⁻¹ min⁻¹). β : Elovich constant (g.mg⁻¹).

Sample	Contaminant	Langmuir	Freundlich	Sips
HPC_700	Paracetamol	$R^{2} = 0.945$ $X^{2} = 134.70$ $q_{m} = 140.25$ $K_{L} = 0.067$	$R^2 = 0.931$ $X^2 = 167.79$ $1/n_F = 0.225$ $K_F = 34.956$	$R^{2} = 0.987$ $X^{2} = 30.02$ $q_{m} = 173.74$ $K_{S} = 0.153$ $1/n_{S} = 0.538$
	Caffeine	$R^{2} = 0.957$ $X^{2} = 128.02$ $q_{m} = 150.09$ $K_{L} = 0.051$	$R^2 = 0.929$ $X^2 = 211.32$ $1/n_F = 0.246$ $K_F = 31.699$	$R^{2} = 0.980$ $X^{2} = 59.04$ $q_{m} = 176.31$ $K_{S} = 0.111$ $1/n_{S} = 0.617$
HPC 800	Paracetamol	$R^2 = 0.946$ $X^2 = 258.84$ $q_m = 168.02$ $K_L = 0.046$	$R^2 = 0.984$ $X^2 = 73.02$ $1/n_F = 0.252$ $K_F = 37.526$	$R^{2} = 0.995$ $X^{2} = 24.20$ $q_{m} = 309.82$ $K_{S} = 0.106$ $1/n_{S} = 0.417$
	Caffeine	$R^2 = 0.962$ $X^2 = 112.44$ $q_m = 154.16$ $K_L = 0.075$	$R^2 = 0.903$ $X^2 = 286.18$ $1/n_F = 0.225$ $K_F = 37.785$	$R^{2} = 0.975$ $X^{2} = 79.76$ $q_{m} = 169.14$ $K_{S} = 0.127$ $1/n_{S} = 0.695$
HPC_900	Paracetamol	$R^2 = 0.903$ $X^2 = 537.181$ $q_m = 187.66$ $K_L = 0.086$	$R^2 = 0.956$ $X^2 = 240.50$ $1/n_F = 5.054$ $K_F = 51.847$	$R^{2} = 0.977$ $X^{2} = 132.14$ $q_{m} = 279.96$ $K_{S} = 0.183$ $1/n_{S} = 2.660$
	Caffeine	$R^{2} = 0.975$ $X^{2} = 82.18$ $q_{m} = 170.88$ $K_{L} = 0.152$	$R^2 = 0.902$ $X^2 = 322.95$ $1/n_F = 0.188$ $K_F = 53.879$	$R^{2} = 0.984$ $X^{2} = 51.80$ $q_{m} = 183.31$ $K_{S} = 0.206$ $1/n_{S} = 0.700$

Table S8 Results of mathematical adjustments obtained from the adsorption isotherms of contaminants.

 R^2 : correlation coefficient. X²: Nonlinear Chi Square Test. q_m : maximum adsorption capacity (mg.g⁻¹). K_L: Langmuir constant (L.mg⁻¹). K_F: Freundlich constant(mg^(1-1/n) L^{1/n} g⁻¹) e 1/n_F: constant related to surface heterogeneity. 1/ns : Sips constant (dimensionless). e K_s: Sips adsorption constant (L.mg⁻¹)^{1/ns}.

Figures

Figure S3 SEM-EDS elemental mapping of Blank_800.

Figure S4 SEM-EDS elemental mapping of HPC_700.

Figure S5 SEM-EDS elemental mapping of HPC_800.

Figure S6 SEM-EDS elemental mapping of HPC_900.

Figure S7 EDS spectra of synthesized materials.

Figure S8 XPS spectra of synthesized materials (a-c) HPC_800 and (d-f) HPC_900.

Figure S9 Raman spectra after deconvolution performed by Lorentz fit for HPC materials produced from bio-oil.

Figure S10 Evaluation of removals using Blank_800 as adsorbent in contact tests with contaminants: paracetamol (PAR). caffeine (CAF). ibuprofen (IBU). amoxicillin (AMX) and 17α -ethinylestradiol (EE2).

Figure S12 Caffeine adsorption kinetic curve using as adsorbent: HPC_700. HPC_800 (a-b) respectively. Caffeine adsorption isotherms using as adsorbent: HPC_700. HPC_800 (c-d) respectively. Paracetamol adsorption kinetic curve using as adsorbent: HPC_700. HPC_800 (e-f) respectively. Paracetamol adsorption isotherms using as adsorbent: HPC_700 and HPC_800 (g-h) respectively.

Figure S13. FTIR spectra of HPC_T synthetized (a) and HPC_T before and after adsorption of contaminants (PAR and CAF).

Figure S14 A schematic representation of the caffeine diffusion process through the pore network of HPC_T until its adsorption within the micropores.

4. References

- 1 E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez and M. E. Zappi, *Clean. Eng. Technol.*, 2020, **1**, 100032.
- 2 L. Largitte and R. Pasquier, *Chem. Eng. Res. Des.*, 2016, **109**, 495–504.
- 3 F. S. Freyria, F. Sannino and B. Bonelli, *Nanomater. Detect. Remov. Wastewater Pollut.*, 2020, 19–46.
- 4 T. R. Sahoo and B. Prelot, *Nanomater. Detect. Remov. Wastewater Pollut.*, 2020, 161–222.
- 5 S. Azizian, J. Colloid Interface Sci., 2004, **276**, 47–52.
- 6 J. P. Simonin, *Chem. Eng. J.*, 2016, **300**, 254–263.
- 7 K. Y. Foo and B. H. Hameed, *Chem. Eng. J.*, 2010, **156**, 2–10.
- 8 J. Wang and X. Guo, *Chemosphere*, 2020, **258**, 127279.
- 9 M. A. Al-Ghouti and D. A. Da'ana, J. Hazard. Mater., 2020, **393**, 122383.