Supplementary material

(Co,Mn)₃O₄ Doping Carbon Nanotubes Composite as

Bifunctional Electrocatalyst for Aluminum-air Battery

Xi Wang^a, Zhao Li^b, Lei Liu^a, Jiuqing Hu^a, Haobo Shen^a, Rongrong Li^c, Zhiqiang Geng^d, Zunlong Jin^{a,*}, Changliang Wang^{a,*}

^a School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China

^b Henan Boiler and Pressure Vessel Inspection Technology Research Institute, Zhengzhou 450001, China

^c Henan Provincial Key Laboratory for Metal Fuel Battery, Zhengzhou Foguang Power Generation Equipment Co., Ltd, Zhengzhou 450001, China

^d College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

*Corresponding authors.

E-mail address: <u>zljin@zzu.edu.cn (Z. Jin)</u>, clwang@zzu.edu.cn (C. Wang).

Fig. S1. SEM images of (a-c) Co₃O₄/NG, and (d-f) Mn₃O₄/NG.

Fig. S2. TEM and HRTEM images (the inset is corresponding FFT pattern) of (a-c) Co₃O₄/NG and (d-f) Mn₃O₄/NG sample.

Fig. S3. XPS survey spectrums of (a) Co₃O₄/NG and (b) Mn₃O₄/NG.

Fig. S4. (a) ORR LSV curves of Co_3O_4/NG at different rotating rates and (b) corresponding K-L plots and electron transfer numbers at different potentials, (c) ORR LSV curves of Mn_3O_4/NG at different rotating rates, and (d) corresponding K-L plots and electron transfer numbers at different potentials.

Fig. S5. Image of 200 W Al-air batteries stack in series.

Catalyst		OER							
	Cathodic peak potential (V vs. RHE)	Anodic peak potential (V vs. RHE)	Limiting current density (mA cm ⁻²)	Half-wave potential (V vs. RHE)	Average electron transfer numbers	Tafel slope (mV dec ⁻¹)	E _j (V vs. RHE)	Tafel slope (mV dec ⁻¹)	Current retention rate (%)
Pt/C	0.78	0.99	5.529	0.839	-	87.17	1.90	291.45	70.84
NG	0.67	1.03	3.670	0.764	-	-	-	-	-
Co ₃ O ₄ /NG	0.84	1.02	5.329	0.765	3.77	92.49	1.75	120.34	81.33
Mn ₃ O ₄ /NG	0.71	-	3.364	0.776	3.48	113.09	1.84	202.03	89.58
(Co,Mn) ₃ O ₄ /NG	0.83	1.03	5.361	0.831	3.99	84.53	1.72	112.51	93.53

Table S1. The detailed electrochemical parameters from various catalysts.

Catalyst	Limiting current density	Half-wave potential	Average electron	E _j @10 mA cm ⁻²	Ref.
Catalyst	(mA cm ⁻²)	(V vs. RHE)	transfer numbers	(V vs. RHE)	
(Co,Mn) ₃ O ₄ /NG	5.361	0.831	3.99	1.72	This work
Co ₃ O ₄ /Mn ₃ O ₄ /CNFs	6.96	0.85	3.96	1.63	S 1
Co ₃ O ₄ /Mn ₃ O ₄ (2:1)/N-rGO	-	0.86	3.85	1.59	S2
Mn ₃ O ₄ /O-CNTs	3.26	0.85	3.95	1.64	S 3
Co ₃ O ₄ /Co ₂ MnO ₄	5.17	1.09	3.80	1.77	S4
Mn _{0.25} -Co ₃ O ₄ /CNTs	6.17	0.75	3.84	1.76	S5
Mn _{1.8} Co _{0.2} (OH) ₃ VO ₃	5.50	0.785	-	1.74	S 6
Mn/Co-N-C-0.02-800	5.30	0.80	4.00	1.66	S 7
Co/Zn/Mn@NC-800	~5.50	0.86	3.65	1.59	S 8
Mn/Co-450/ZIF-67	7.04	0.78	4.00	1.61	S9
MnO-Co@N-doped carbon	4.64	0.82	4.08	1.59	S10

Table S2. Comparison of Co, Mn oxides electrocatalysts performance for ORR and OER.

References

- [S1] L. Li, L. Fu, R. Wang, J. Sun, X. Li, C. Fu, L. Fang, W. Zhang, Electrochim. Acta 344 (2020) 136145.
- [S2] Q. Huang, X. Zhong, Q. Zhang, X. Wu, M. Jiao, B. Chen, J. Sheng, G. Zhou, J. Energy Chem. 68 (2022) 679-687.
- [S3] L. Li, J. Yang, H. Yang, L. Zhang, J. Shao, W. Huang, B. Liu, X. Dong, ACS Appl. Energy Mater. 1 (2018) 963-969.
- [S4] D. Wang, X. Chen, D.G. Evans, W. Yang, Nanoscale 5 (2013) 5312-5315.
- [S5] S. Li, Z. Xia, W. Zhao, K. Wu, L. Suo, Y. Huo, L. Li, Ionics 27 (2021) 1619-1632.
- [S6] X. Zheng, X. Cao, Y. Zhang, K. Zeng, L. Chen, R. Yang, J. Colloid Interface Sci. 628 (2022) 922-930.
- [S7] L. Wei, L. Qiu, Y. Liu, J. Zhang, D. Yuan, L. Wang, ACS Sustainable Chem. Eng. 7 (2019) 14180-14188.
- [S8] S. Chen, H. Ren, Y. Qiu, C. Luo, Q. Zhao, W. Yang, J. Power Sources 573 (2023) 233116.

[S9] C. Huang, Y. Zhang, X. Li, H. Cao, Y. Guo, C. Zhang, Appl. Catal. B 319 (2022) 121909.
[S10] L. Peng, X. Peng, Z. Zhu, Q. Xu, K. Luo, Z. Ni, D. Yuan, Int. J. Hydrogen Energy 48 (2023) 19126-19136.