Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Silver-catalyzed stereoselective Meyer-Schuster-type rearrangement:

Synthesis of densely substituted α -iodo, α , β -unsaturated thioesters

José L. Lopes, Lucas L. Baldassari, and Diogo S. Lüdtke*

TABLE OF CONTENTS

1.	General Information	02
2.	General procedure for the synthesis of α -iodo, α , β -unsaturated thioesters	02
3.	General procedure for coupling reaction	
	3.1. Suzuki coupling reaction	12
	3.2. Sonogoshira coupling reaction	13
4.	NMR Spectra	14

1. General Information

Unless otherwise stated, all glassware was dried before use and all reactions were performed under an atmosphere of argon. All solvents were distilled from appropriate drying agents prior to use. All reagents were used as received from commercial suppliers unless otherwise stated. Reaction progress was monitored by thin layer chromatography (TLC) performed on aluminum plates coated with silica gel F254 with 0.2 mm thickness. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm, iodine and by staining using vanillin solution. Flash column chromatography was performed using silica (230-400 mesh, Merck and co.). Neat infrared spectra were recorded using a Perkin-Elmer Spectrum 100 FT-IR spectrometer. Wavenumbers (= 1/l) are reported in cm⁻¹. Mass spectra were obtained using an Agilent 5973 (70 eV) spectrometer, using electrospray ionization (ESI). All ¹H NMR and ¹³C NMR spectra were recorded using a 400 MHz spectrometer at 298K (frequency for ¹H). Chemical shifts were given in parts per million (ppm, δ), referenced to TMS, defined at δ = 0.0 ppm (¹H NMR) and to the solvent peak of CDCl₃, defined at δ = 77.00 (¹³C NMR). Coupling constants are quoted in Hz (J). ¹H NMR splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q), quintet (qt), sextet (sext), heptet (hept), septet (se) and nonet (n). Splitting patterns that could not be interpreted or easily visualized were designated as multiplet (m).

2. General procedure for the synthesis of α -iodo, $\alpha\beta$ -unsaturated thioesters

N-iodo-succinimide (1.5 equiv., 0.375 mmol, 0.0844g), Ag₂O (5 mol %, 0.0029g) and dry MeCN (1mL) were added to a flame-dried Schlenk flask containing thioalkyne (0.25 mmol), under argon atmosphere. The reaction was stirred until the complete consumption of the substrate. The reaction was monitored by TLC and after the complete consumption of thioalkyne the solvent was removed and the crude product was purified on flash column chromatography using a gradient of hexane and ethyl acetate as eluent (98:2 hexane /ethyl acetate).

S-butyl 2-iodo-3-methylbut-2-enethioate (1)

Yellow oil. **Yield:** 95% (0.071 g). ¹**H NMR** (400 MHz, CDCl₃) δ 2.95 (t, J = 7.4 Hz, 2H), 2.07 (s, 3H), 2.06 (s, 3H), 1,61 (qt, J = 7.3, 2H), 1.42 (sext, J = 7.3 Hz, 2H), 0.93 (t, J = 7.3, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 193.1, 147.1, 91.4, 31.3, 30.8,

30.4, 22.3, 22.0, 13.6. **IR** (ν_{max} , cm⁻¹):2961, 2929, 2865, 1660, 1436, 1240, 1124, 1030, 857, 787. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₉H₁₅IOS 298.9967, found 298.9955.

S-methyl 2-iodo-3-methylbut-2-enethioate (2)

Yellow oil. Yield: 38% (0.0246g). This product is volatile and despite
 full conversion, isolated yield is lowered due to loss of mass during the removal of the solvent. Yields determined by ¹H NMR using mesitylene as internal standard: 90%. ¹H NMR (400 MHz, CDCl₃) δ

2.39 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 193.3, 147.9, 91.2, 31.1, 22.5, 13,6. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₆H₉IOS 256.9497, found 256.9492.

S-octyl 2-iodo-3-methylbut-2-enethioate (3)

Yellow oil. **Yield:** 92% (0.0844g). ¹**H NMR** (400 MHz, CDCl₃) δ 2.94 (t, *J* = 7.1 Hz, 2H), 2.07 (s, 6H), 1.62 (qt, *J* =7.3 Hz, 2H), 1.44-1.35 (m, 2H), 1,35-1.24 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100

MHz, CDCl₃) δ 193.0, 147.1, 91.5, 31.7, 30.8, 30.7, 29.2, 29.1, 29.0, 28.8, 22.6, 22.3, 14.1.**IR** (ν_{max} , cm⁻¹):2961, 2923, 2859, 1667, 1584, 1444, 1252, 1119, 1116, 972, 787, 736. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₃H₂₃IOS 355.0593, found 355.0591.

S-butyl 2-cyclohexylidene-2-iodoethanethioate (4)

Yellow oil. **Yield:** 90% (0.0502g).¹**H NMR** (400 MHz, CDCl₃) δ 2.96 (t, *J* = 7.4 Hz, 2H), 2.48-2.40 (m, 4H), 1.68 - 1.52 (m, 8H), 1.42 (sext, *J* = 7.3 Hz, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 193.2, 152.1, 87.7,

40.0, 33.1, 31.3, 29.9, 28.0, 27.4, 25.8, 22.0, 13.6. HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd. for C₁₂H₁₉IOS 339.0280, found 339.0279.

S-(2-ethylheptyl) 2-cyclohexylidene-2-iodoethanethioate (5)

Yellow oil. **Yield:** 88% (0.093g). ¹**H NMR** (400 MHz, CDCl₃) δ 3.00 (d, J = 6.1 Hz, 2H), 2.51 – 2.38 (m, 4H), 1.68 – 1.61 (m, 2H), 1.60 – 1.52 (m, 5H), 1.44 – 1.23 (m, 9H), 0.92 – 0.88 (m, 6H). ¹³**C NMR** (100 MHz,

CDCl₃) δ 193.2, 151.8, 87.6, 39.8, 39.2, 33.9, 33.0, 32.4, 28.8, 27.9, 27.4, 25.8 (2C), 22.9, 14.0, 10.9. **IR** (ν_{max} , cm⁻¹):2960, 2923, 2852, 1660, 1609, 1450, 1119, 1112, 1054, 978, 768, 723. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₇H₂₉IOS 395.0906, found 395.0913.

S-pent-4-en-1-yl 2-iodo-3-methylbut-2-enethioate (6)

Yellow oil. **Yield:** 65% (0.051g). ¹**H NMR** (400 MHz, CDCl₃) δ 5.78 (ddt, *J* = 16.9, 10.1, 6.7 Hz, 1H), 5.03 (dd, *J* = 16.9, 1.7 Hz, 1H), 4.99 (dd, *J* = 10.1, 1.7 Hz, 1H), 2.93 (t, *J* = 6.9 Hz,

2H), 2.15 (q, J = 6.9 Hz, 2H), 2.06 (s, 3H), 2.05 (s, 3H), 1.71 (qt, J = 7.4 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 192.8, 147.3, 137.3, 115.5, 91.4, 32.7, 30.9, 30.0, 28.4, 22.3. **IR** (ν_{max} , cm⁻¹):2955, 2916, 2846, 1660, 1603, 1463, 1138, 1080, 800, 723. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₆IOS 310.9967, found 310.9972.

S-phenyl 2-iodo-3-methylbut-2-enethioate (7)

Yellow oil. **Yield:** 52% (0.048 g).¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 5H), 2.14 (s, 3H), 2.10 (s, 3H). ¹³NMR (100 MHz, CDCl₃) δ 190.9, 148.9, 134.6, 129.6, 129.3, 128.6, 90.6, 31.1, 22.8. **IR** (ν_{max} , cm⁻¹): 3063, 2923, 2846, 1673, 1577, 1444, 1125, 1016, 856,

787, 742, 678. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₁IOS 318.9654, found 318.9651.

S-(p-tolyl) 2-iodo-3-methylbut-2-enethioate (9)

Yellow oil. **Yield:** 65% (0.054 g).¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 2.38 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 148.7, 139.9, 134.5, 130.1, 124.9, 90.6, 31.0, 22.7, 21.3. **IR**

(v_{max}, cm⁻¹): 3063, 2923, 2846, 1673, 1577, 1444, 1125, 1016, 856, 787, 742, 678. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₁₃IOS332.9810, found 332.9812.

S-(4-fluorophenyl) 2-iodo-3-methylbut-2-enethioate (10)

Yellow oil. **Yield:** 45% (0.038 g).¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.17 – 7.10 (m, 2H), 2.14 (s, 3H), 2.11 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 190.8 (d, *J* = 1.3 Hz), 163.5 (d, *J* = 250.4 Hz), 149.5, 136.7 (d, *J* = 8.6 Hz), 123.9

(d, J = 3.5 Hz), 116.6 (d, J = 22.1 Hz), 90.4, 31.3, 22.9.¹⁹F NMR (376 MHz, CDCl₃) δ - 110.74. **IR** (ν_{max} , cm⁻¹): 3063, 2923, 2846, 1673, 1577, 1444, 1125, 1016, 856, 787, 742, 678. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₀FIOS 336.9559, found 336.9562.

S-phenyl 2-cyclopentylidene-2-iodoethanethioate (11)

Yellow oil. **Yield:** 90% (0.102 g). ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 - 7.41 (m, 5H), 2.82 - 2.76 (m, 2H), 2.54 - 2.48 (m, 2H), 1.89 (qt, *J* = 6.9 Hz, 2H), 1.72 (qt, *J* = 7.0 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 188.2, 170.2, 134.6, 130.6, 129.4, 129.1,

88.3, 45.1, 37.3, 28.5, 24.8. **HRMS** (ESI-TOF) m/z: $[M+H]^+$ calcd. for C₁₃H₁₃IOS 344.9810, found 344.9803.

S-phenyl 2-cyclohexylidene-2-iodoethanethioate (12)

Yellow oil. **Yield:** 84% (0.075 g). ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 - 7.40 (m, 5H), 2.56-2.53 (m, 2H), 2.46-2.43 (m, 2H), 1.66 - 1.63 (m, 2H), 1.60-1.57 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 190.9, 153.3, 134.4, 129.6, 129.2, 127.9, 86.7, 39.9, 33.3,

28.0, 27.4, 25.7. **IR** (ν_{max} , cm⁻¹):3063, 2929, 2852,1667, 1615, 1437, 1227, 1112, 1049, 978, 742, 692. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₄H₁₅IOS 358.9967, found 358.9964.

S-(4-chlorophenyl) 2-cyclohexylidene-2-iodoethanethioate (13)

Yellow oil. Yield: 94% (0.068 g).¹H NMR (400 MHz, CDCl₃) δ 7.43 - 7.37 (m, 4H), 2.55-2.52 (m, 2H), 2.47- 2.43 (m, 2H), 1.68 - 1.63 (m, 2H), 1.60-1.57 (m, 4H).¹³C NMR

(100 MHz, CDCl₃) δ 190.7, 154.3, 136.0, 129.8, 129.6, 126.8, 86.8, 40.4, 33.8, 28.3, 27.8, 26.0. **IR** (ν_{max} , cm⁻¹):3056, 2929, 2916, 2857, 1756, 1660, 1571, 1469, 1387, 1214, 1049, 819, 767. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₄H₁₄CIIOS 392.9577, found 392.9564.

S-octyl 2-iodo-3,3-diphenylprop-2-enethioate (14)

Yellow oil. **Yield:** 90% (0.108g). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 3H), 7.29 – 7.22 (m, 5H), 7.20 – 7.17 (m, 2H), 2.78 (t, *J* = 7.2 Hz, 2H), 1.39 (qt, *J* = 7.0 Hz, 2H), 1.32 – 1.14 (m, 10H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, 100 MH

CDCl₃) δ 193.9, 153.6, 143.5, 139.4, 129.5, 129.0, 128.6, 128.5, 128.2, 128.0, 94.7, 31.7, 30.2, 29.0 (2C), 28.8, 28.5, 22.6, 14.1. **IR** (ν_{max} , cm⁻¹):3063, 2954, 2916, 2846, 1736, 1654, 1577, 1437, 1233, 1169, 1080, 927, 749, 697. **HRMS** (ESI-TOF) m / z: [M+H]⁺ calcd. for C₂₃H₂₇IOS 479.0906, found 479.0914.

(Z)-S-phenyl 2-iodo-3-phenylprop-2-enethioate (15)

Yellow solid, melting point: 71 °C. **Yield:** 93% (0.086 g). ¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.81 (dd, *J* = 6.7, 2.9 Hz, 2H), 7.49 (dd, *J* = 6.8, 3.1 Hz, 2H), 7.47 – 7.43 (m, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 187.5, 146.0, 144.7,

134.9, 134.8, 134.3, 130.4, 129.7, 129.2, 128.3, 99.0. **IR** (ν_{max} , cm⁻¹):3056, 2955, 2913, 2841, 1648, 1584, 1437, 1271, 1175, 1067, 1016, 831, 742, 685. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₅H₁₁IOS 366.9654, found 366.9663.

(Z)-S-phenyl 3-(4-fluorophenyl)-2-iodoprop-2-enethioate (16)

Yellow solid, melting point: 79 °C. **Yield:** 60 % (0.065g). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.89 – 7.81 (m, 2H), 7.53 – 7.42 (m, 5H), 7.20 – 7.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 187.6, 163.7 (d, *J* = 250.0 Hz),

144.8, 134.9, 132.1(d, J = 8.6 Hz), 131.0 (d, J = 3.4 Hz), 129.8, 129.3,128.2, 115.6 (d, J = 20.0 Hz), 98.8 (d, J = 1.7 Hz).¹⁹**F NMR** (376 MHz, CDCI3): -111.81. **IR** (v_{max} , cm⁻¹):3056, 2980, 2929, 2852, 1667, 1596, 1500, 1233, 1157, 1068, 870, 831, 780, 736. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₅H₁₀FIOS 384.9559, found 384.9563.

(Z) - S-phenyl 3-(4-chlorophenyl)-2-iodoprop-2enethioate (17)

Yellow solid, melting point: 73 °C. **Yield:** 56% (0.057 g). ¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.80 – 7.73 (m, 2H), 7.50 – 7.40 (m, 7H). ¹³**C NMR** (100 MHz, CDCl₃) δ

187.6, 144.6, 136.4, 134.8, 133.4, 131.0, 129.9, 129.4, 128.7, 128.1, 99.8. **IR** (ν_{max} , cm⁻¹):3056, 2980, 2910, 2852, 1667, 1577, 1476, 1271, 1068, 1004, 883, 812, 742, 678. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₅H₁₀CIIOS 400.9264, found 400.9266.

(Z)-S-phenyl 3-(4-bromophenyl)-2-iodoprop-2-enethioate (18)

Yellow solid, melting point: 74 °C. Yield: 80 % (0.089g). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.68 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.51 – 7.42 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 187.6,

144.7, 134.8, 133.8, 131.7, 131.2, 129.9, 129.3, 128.1, 124.8, 99.9. **IR** (v_{max} , cm⁻¹):3050, 2923, 2840, 1667, 1571, 1469, 1398, 1265, 1061, 1010, 876, 845, 812, 742, 678. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₁₅H₁₀BrIOS 444.8759, found 444.8742.

(Z)-S-phenyl 2-iodo-3-(4-(trifluoromethyl)phenyl)prop-2-enethioate (19)

White solid, melting point: 75 °C. **Yield:** 60 % (0.065g).¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.85 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.44 (m, 5H). ¹³**C NMR** (100 MHz, CDCl₃) δ 187.7,

144.2, 138.8 (q, J = 1.2 Hz), 134.8, 131.7 (q, J = 32.7 Hz), 130.0, 129.7, 129.4, 127.9, 125.4 (q, J = 3.8 Hz), 123.8 (q, J = 275.0 Hz), 101.9. ¹⁹**F NMR** (376 MHz, CDCl3): -62.87. **IR** (ν_{max} , cm⁻¹):3075, 2916, 2845, 1667, 1596, 1475, 1322, 1175, 1119, 1068, 883, 831, 742. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₆H₁₀F₃IOS 434.9527, found 434.9519.

(Z) - S-phenyl (Z)-2-iodo-3-(3-methoxyphenyl)prop-2-enethioate (20)

Brown solid, melting point: 71 °C. **Yield:** 39 % (0.037g). ¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.51 – 7.40 (m, 7H), 7.37 - 7.32 (m, 2H), 3.86 (s, 3H).¹³**C NMR** (101 MHz, cdcl₃) δ 187.7, 159.3, 145.9, 136.2, 134.9, 129.8, 129.5, 129.3, 122.6, 116.5, 114.3, 99.2, 55.4. **HRMS** (ESI-TOF) m / z:

 $[M+H]^+$ calcd. for C₁₆H₁₃IO₂S 396.9759, found 396.9766.

(Z)-S-phenyl 3-(furan-2-yl)-2-iodoprop-2-enethioate(21)

Yellow solid, **melting point:** 70 °C. **Yield:** 35% (0.036g). ¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.68 (d, *J* = 1.6 Hz, 1H), 7.64 (d, *J* = 3.6 Hz, 1H), 7.50 – 7.41 (m, 5H), 6.62 (dd, *J* = 3.6, 1.6 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 186.9,

150.5, 145.8, 134.9, 133.7, 129.7, 129.3, 128.5, 117.6, 112.4, 92.9. **HRMS** (ESI-TOF) m /z: [M+H]⁺ calcd. For C₁₃H₉IO₂S 356.9446, found 356.9446.

(Z)-S-phenyl 2-iodooct-2-enethioate (22)

Yellow oil. **Yield:** 80 % (0.0763g). ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 5H), 7.29 (t, *J* = 7.0 Hz, 1H), 2.41 (q, *J* = 7.2 Hz, 2H), 1.57 (qt, *J* = 7.3 Hz, 2H), 1.39 – 1.35 (m, 4H), 0.93 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (100

MHz, CDCl₃) δ 186.1, 151.9, 134.9, 129.7, 129.2, 128.1, 103.7, 37.2, 31.4, 27.2, 22.4, 13.9. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₄H₁₇IOS 361.0123, found 361.0142.

(Z)-S-(3-chlorophenyl) 2-iodooct-2-enethioate (23)

Yellow oil. **Yield:** 55% (0.053g). ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.46 (m, 1H), 7.45 – 7.27 (m, 4H), 2.44 (q, *J* = 7.2 Hz, 2H), 1.62 – 1.55 (m, 2H), 1.44 – 1.35 (m, 4H), 0.95 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 185.3, 152.4, 134.7, 134.6, 133.0,

130.2, 129.9, 129.8, 103.1, 37.2, 31.4, 27.2, 22.4, 13.9. HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. for C₁₄H₁₆CIIOS 394.9733, found 394.9719.

(Z)-S-butyl 2-iodooct-2-enethioate (24)

Yellow oil. **Yield:** 66% (0.051g). ¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (t, *J* = 7.0 Hz, 1H), 2.96 (t, *J* = 7.3 Hz, 2H), 2.36 (q, *J* = 7.0 Hz, 2H), 1.65 – 1.49 (m, 4H), 1.47 – 1.30 (m, 6H), 0.96 – 0.91 (m, 6H). ¹³**C NMR**

(100 MHz, CDCl₃) δ 188.2, 150.6, 104.9, 37.1, 31.4, 31.3, 30.6, 27.2, 22.4, 22.0, 13.9, 13.6. **IR** (ν_{max} , cm⁻¹):2955, 2929, 2852, 1660, 1610, 1456, 1265, 1080, 806, 723, 647. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₂₁IOS 341.0436, found341.0431.

Yellow oil. Yield: 66% (0.065g). ¹H NMR (400 MHz, CDCl₃) δ 7.09 (t, *J* = 7.0 Hz, 1H), 2.88 (t, *J* = 7.2 Hz, 2H), 2.29 (q, *J* = 7.0 Hz, 2H), 1.54 (qt, *J* = 7.4 Hz, 2H), 1.46 (qt, *J* = 7.4 Hz, 2H), 1.30 - 1.26 (m, 4H), 1.24 -1.16 (m, 10H), 0.85 - 0.80 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 150.6,

104.9, 37.1, 31.8, 31.4, 31.0, 29.2, 29.1 (2C), 28.9, 27.2, 22.6, 22.4, 14.1, 13.9. **HRMS** (ESI-TOF) m/z: $[M+H]^+$ calcd. for C₁₆H₂₉IOS 397.1062, found 397.1043.

(Z)-S-octyl 2-iodo-3-phenylprop-2-enethioate (26)

Yellow oil. Yield: 88% (0.089 g) isomers mixture,
E:Z (36:62). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s,
1H), 7.79 – 7.74 (m, 2H), 7.45 – 7.40 (m, 3H), 7.36 (s, 0,6H), 7.32 – 7.24 (m, 3H), 3.01 (t, J = 7.4 Hz,

2H), 2.92 (t, J = 7.3 Hz, 1.2H), 1.65 (qt, J = 7.4 Hz, 2H), 1.55 (qt, J = 7.3 Hz, 1.2H), 1.45 – 1.37 (m, 2H), 1.43 – 1.20 (m, 14H), 0.90 – 0.86 (m, 4.8H). ¹³**C NMR** (100 MHz, CDCl₃) δ 193.5, 189.6, 145.1, 144.1,135.8, 135.2, 130.1, 129.6, 128.9, 128.4, 128.3, 128.2, 100.5, 91.5, 31.8, 31.7, 31.5, 31.4, 30.1, 29.9, 29.2, 29.11, 29.06, 28.9, 28.8, 28.6, 22.6 (2C), 14.1 (2C). **IR**(v_{max} , cm⁻¹):3063, 2954, 2916, 2846, 1648, 1589, 1444, 1258, 1067, 1016, 774, 692. **HRMS** (ESI-TOF) m / z: [M+H]⁺ calcd. for C₁₇H₂₃IOS 403.0593, found 403.0599.

(Z)-S-octyl 3-(4-bromophenyl)-2-iodoprop-2enethioate (27)

Yellow oil. **Yield:** 81% (0.085 g) isomers mixture, *E*:*Z* (46:54). Major isomer: ¹H NMR (400 MHz,

CDCI₃) δ 8.03 (s, 1H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 2.93 (t, *J* = 7.4 Hz, 2H), 1.57 (qt, *J* = 7.3 Hz, 2H), 1.36-1.29 (m, 2H), 1.27-1.16 (m, 8H), 0.81 (t, *J* = 6.7 Hz, 4H). ¹³**C NMR (100 MHz, CDCI**₃) δ 189.6, 143.7, 134.1, 131.6, 131.1, 124.5, 101.4, 31.8, 31.6, 29.7, 29.1, 29.0, 28.9, 22.6, 14.1. **IR** (v_{max}, cm⁻¹):2954, 2916, 2840, 1654, 1577, 1482, 1398, 1265, 1074, 1004, 889, 806, 768. **HRMS** (ESI-TOF) m / z: [M+H]⁺ calcd for C₁₇H₂₂BrIOS 480.9698, found 480.9660.

(Z)-S-octyl 3-(4-fluorophenyl)-2-iodoprop-2-enethioate (28)

Yellow oil. **Yield:** 74% (0.079 g) isomers mixture, *E*:*Z* (36:62). ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.85 – 7.75 (m, 2H), 7.31 (s, 0.6H), 7.28 – 7.22 (m, 1.2H), 7.17 – 7.09 (m, 2H), 7.03 – 6.96 (m,

1.2H), 3.00 (t, J = 7.4 Hz, 2H), 2.92 (t, J = 7.3 Hz, 1.2H), 1.65 (qt, J = 7.4 Hz, 2H), 1.56 (qt, J = 7.3 Hz, 1.2H), 1.41 (qt, J = 7.0 Hz, 2H), 1.36 – 1.22 (m, 14H), 0.91 – 0.85 (m, 4.8H). ¹³**C NMR (100 MHz, CDCI**₃) δ 193.3, 189.5, 163.5 (d, J = 250.0 Hz), 163.4 (d, J = 250.0 Hz), 143.8, 142.9,132.0 (d, J = 3.0 Hz), 131.9 (d, J = 8.5Hz), 131.1 (d, J = 3.4 Hz), 130.3 (d, J = 8.0 Hz), 115.5 (d, J = 20.0 Hz), 115.4 (d, J = 20.0 Hz), 100.33, 100.31, 91.4, 91.3, 31.8, 31.7, 31.5, 30.0, 29.14, 29.11, 29.07, 29.0, 28.9, 28.8, 22.6, 22.5, 14.07, 14.05. ¹⁹F NMR (376 MHz, CDCl3): -108.87. IR (v_{max} , cm⁻¹):2954, 2923, 2846, 1730, 1660, 1596, 1507, 1456, 1227, 1157, 1080, 882, 826, 780, 742. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₇H₂₂FIOS 421.0498, found 421.0484.

(Z)-S-octyl 2-iodo-3-phenylbut-2-enethioate (29)

Yellow oil. Yield: 94% (0.098 g) isomers mixture, E:Z (50:50). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.36 – 7.26 (m, 4H), 7.24 – 7.17 (m, 4H), 3.01 (t, J = 7.4 Hz, 2H), 2.70 (t, J = 7.3 Hz, 2H),

2.41 (s, 3H), 2.31 (s, 3H), 1.66 (qt, J = 7.4 Hz, 2H), 1.40 (qt, J = 7.3 Hz, 2H), 1.37 – 1.10 (m, 20H), 0.91 – 0.84 (m, 6H). ¹³**C NMR (100 MHz, CDCI₃)** δ 193.45, 193.41, 150.1, 149.3,145.1, 139.8, 128.4,128.3, 128.1, 127.9, 127.7, 126.9, 94.9, 92.1, 31.7 (2C), 30.6,30.4, 30.1, 29.2, 29.1, 29.0 (2C), 28.9, 28.83, 28.81, 28.4, 23.4, 22.6 (2C), 14.1 (2C). **IR** (v_{max} , cm⁻¹):3056, 2923, 2852, 1673, 1590, 1476, 1437, 1106, 1023, 965,761, 742, 692. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₈H₂₆IOS 417.0749, found 417.0752.

(Z)-S-octyl 2-iodo-3-(4-(trifluoromethyl)phenyl)but-2-enethioate (30)

Yellow oil. Yield: 80% (0.057g) isomers mixture, *E*:*Z* (45:55). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.1 Hz, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.35 - 7.30 (m,

4H), 3.03 (t, J = 7.2 Hz, 2H), 2.72 (t, J = 7.2 Hz, 2H), 2.41 (s, 3H), 2.31 (s, 3H), 1.67 (qt, J = 7.4 Hz, 2H), 1.41 (qt, J = 7.4 Hz, 2H), 1.37 – 1.10 (m, 20H), 0.91 – 0.84 (m, 6H). ¹³**C NMR (100 MHz, CDCI₃)** δ 193.2, 193.1, 148.6, 148.5, 147.7, 143.4, 130.2 (q, J = 30.0

Hz),130.1 (q, J = 30.0 Hz), 128.1, 127.5, 125.6 (q, J = 4.0 Hz), 125.2 (q, J=4.0 Hz), 123.9 (q, J = 270 Hz), 121.2 (q, J = 270 Hz), 96.4, 92.9, 31.8, 31.7, 30.6, 30.3, 30.1, 29.2, 29.1, 29.05, 29.01, 28.9, 28.84, 28.82, 28.4, 23.2, 22.6, 22.5, 14.08, 14.05. ¹⁹F NMR (376 MHz, CDCl3): -62.69. IR (v_{max} , cm⁻¹): 2954, 2923, 2859, 1660, 1609, 1405, 1322, 1163, 1125, 1061, 1022, 838, 774, 736, 608. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₉H₂₄F₃IOS 485.0623, found: 485.0613.

(Z)-S-octyl 2-iodo-3-(4-nitrophenyl)but-2-enethioate (31)

Yellow solid, melting point: 78 °C. **Yield:** 72% (0.053 g). ¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 2.73 (t, *J* = 7.2 Hz, 2H),

2.42 (s, 3H), 2.00 – 1.82 (m, 2H), 1.48 – 1.09 (m, 10H), 0.87 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 192.9, 147.4, 147.0, 146.5, 128.6, 123.5, 97.6, 31.7, 30.3, 29.0, 28.9, 28.8, 28.5, 23.1, 22.6, 14.1. **IR** (v_{max}, cm⁻¹):3094, 2916, 2846, 1654, 1584, 1507, 1469, 1335, 1106, 1009, 857, 755, 704, 614. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₈H₂₄INO₃S 462.0600, found 462.0593.

(Z)-S-octyl 2-iodo-3-(4-methoxyphenyl)but-2-enethioate (32)

Yellow solid, melting point: 77 °C. Yield: 88% (0.094g). ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 2H), 6.95 – 6.90 (m, 2H), 3.84 (s, 3H), 2.33 (t,

J = 7.4 Hz, 2H), 1.81 (s, 3H), 1.42 (qt, J = 7.1 Hz, 2H), 1.30 – 1.10 (m, 10H), 0.87 (t, J = 7.0 Hz, 3H). ¹³**C** NMR(101 MHz, CDCl₃) δ 196.7, 160.4, 157.2, 130.1, 129.0, 114.2, 98.5, 55.3, 34.7, 31.7, 29.4, 28.9 (2C), 28.7, 28.5, 22.5, 14.0. IR (v_{max} , cm⁻¹): 2954, 2923, 2846, 1680, 1603, 1500, 1290, 1253, 1176, 1030, 825, 704. HRMS (ESI-TOF) m / z: [M+H]⁺ calcd. for C₁₉H₂₇IO₂S 447.0855, found 447.0871.

(Z)-S-phenyl 2-iodo-3-phenylbut-2-enethioate (33)

Yellow solid, melting point: 76 °C. Yield: 65% (0.063 g) isomers mixture, *E*:*Z* (33:67). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.49 – 7.44 (m, 3H), 7.42 – 7.25 (m, 7H), 7.20 – 7.15 (m, 2H), 7.12 – 7.09 (m, 1H), 2.45 (s, 1,5H), 2.37

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 191.5, 151.3, 151.2, 145.0, 139.7, 134.7,

134.4, 129.8, 129.5, 129.3, 129.1, 128.6, 128.5, 128.3, 128.1, 128.0, 127.9, 127.3, 126.8, 93.6, 91.0, 30.2, 23.7. **HRMS** (ESI-TOF) m / z: [M+H]⁺ calcd. for C₁₆H₁₃IOS 380.9810, found 380.9804.

(Z)-S-phenyl 2-iodo-3-(4-methoxyphenyl)but-2-enethioate (34)

Yellow solid, melting point: 79 °C. Yield: 41% (0.0416g). ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.10 (m, 7H), 6.73 – 6.68 (m, 2H), 3.73 (s, 3H), 2.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 159.5, 147.7,

133.3, 132.5, 132.3, 130.7, 128.6, 127.9, 113.2, 95.3, 55.1, 29.3. **IR** (v_{max} , cm⁻¹):3056, 2929, 2833,1692, 1596, 1495, 1297, 1253, 1169, 1023, 825, 742, 678. **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₇H₁₅IO₂S 410.9916, found 410.9925.

3. General procedure for coupling reaction

3.1. Suzuki coupling reaction

Procedure: 4-nitrophenylboronic acid (0.071g, 0.42 mmol,), $Pd(PPh_3)_2Cl_2$ (0.0182g, 0.026 mmol), Cs_2CO_3 (0.0847 g, 0.26 mmol) and dry THF (2 mL) were added to a sealed reaction tube containing compound tioester **12b** (0.0622 g, 0.13 mmol). The sealed tube was submerged in an oil bath at 80 °C and stirred for 24h. After this period, the reaction was quenching with 5 mL H₂O and the organic phase was extracted with 3x10 mL EtOAc. The solvent was removed and the crude product was purified on flash column chromatography using a gradient of hexane and ethyl acetate as eluent (96:4 hexane /ethyl acetate).

S-octyl 2-(4-nitrophenyl)-3,3-diphenylprop-2-enethioate (39)

Yellow solid, melting point: 90 °C. Yield: 74 % (0.039 g). ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.01 (m, 2H), 7.36 – 7.27 (m, 7H), 7.24 – 7.12 (m, 3H), 7.01 – 6.95 (m, 2H), 2.82 (t, *J* = 7.2 Hz, 2H), 1.46 – 1.37 (m, 2H), 1.30 - 1.25 (m, 10H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 147.9, 146.7, 144.9, 140.1, 139.8, 138.0, 131.1, 130.9, 130.0, 128.9, 128.5, 128.2(2C), 123.5, 31.8, 29.8, 29.1, 29.0(2C), 28.6, 22.6, 14.1.

HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd. For C₂₉H₃₂NO₃S 474.2103, found 474.2098.

3.2. Sonogoshira coupling reaction

Procedure: *p*-tolylacetylene (0.0465g, 0.4 mmol,), Pd(PPh₃)₂Cl₂ (0.0084g, 0.012 mmol), Cul (0.0033g, 0.017 mmol,), DIPEA (0.052g, 0.4 mmol,) and 1mL dioxane were added to a sealed reaction tube containing compound tioester **12b** (0.050g, 0.1 mmol). Under inert environment and reflux system at 80°C the reaction mixture was stirred vigorously for 3h. After this period, the reaction was quenching with 5 mL H₂O and the organic phase was extracted with 3x10 mL EtOAc. The solvent was removed and the crude product was purified on flash column chromatography using a gradient of hexane and ethyl acetate as eluent (98:2 hexane /ethyl acetate).

S-octyl 2-(diphenylmethylene)-4-(p-tolyl)but-3-ynethioate (40)

Yellow solid, melting point: 95 °C. Yield: in 83% (0.0367 g). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H), 7.38 – 7.18 (m, 10H), 7.09 (d, *J* = 7.8 Hz, 2H), 2.84 (t, *J* = 7.3 Hz, 2H), 2.34 (s, 3H), 1.52 - 1.47 (m, 2H), 1.29-1.23 (m, 10H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 153.6, 140.4, 140.3, 138.8, 131.2, 130.5, 129.8, 129.0 (2C), 128.5, 128.3, 127.9, 127.7, 121.0, 119.8, 96.2, 86.9, 31.8, 29.7, 29.1 (2C), 28.8, 22.6, 21.5, 14.1. HRMS (ESI-TOF) m / z:

 $[M+Na]^+$ calcd. for $C_{32}H_{34}OS467.2409$, found 467.2383.

 ^{13}C NMR spectrum for compound $\boldsymbol{1}$ in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound $\boldsymbol{3}$ in CDCl3, 100 MHz

 ^{13}C NMR spectrum for compound 4 in CDCl₃, 100 MHz

 ^{13}C NMR spectrum for compound $\boldsymbol{5}$ in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 7 in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 10 in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 11 in CDCl_3, 100 MHz

$\begin{array}{c} 2.56\\ 2.55\\ 2.55\\ 2.55\\ 2.53\\ -2.55\\ -2.44\\ -2.43\\ -2.43\\ -2.43\\ -2.43\\ -2.43\\ -1.66\\ -1.66\\ -1.66\\ -1.66\\ -1.65\\ -1.66\\ -1.65\\$

 $\begin{array}{c} 2.55\\ 2.54\\ 2.52\\ 2.52\\ 2.45\\ 2.45\\ 2.43\\ 2.45\\ 1.67\\ 1.65\\ 1.66\\ 1.60\\ 1.60\\ 1.57\\$

 ^{13}C NMR spectrum for compound 13 in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 14 in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 15 in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 16 in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 17 in CDCl_3, 100 MHz

¹³C NMR spectrum for compound **18** in CDCl₃, 100 MHz

 ^{13}C NMR spectrum for compound 19 in CDCl_3, 100 MHz

¹⁹F NMR spectrum for compound **19** (CDCI₃, 376 MHz)

 ^{13}C NMR spectrum for compound 21 in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound **22** in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 23 in CDCl_3, 100 MHz

¹³C NMR spectrum for compound **24** ($Z \angle E$ isomer`s mixture) in CDCl₃, 100 MHz

 ^{13}C NMR spectrum for compound 25 in CDCl_3, 100 MHz

 $\begin{array}{c} 7.3.02\\ 2.94\\ 2.92\\ 2.91\\ 1.65\\ 1.1.23\\$

¹³C NMR NMR spectrum for compound **27** (Z/E isomer`s mixture) in CDCl₃, 400 MHz

¹³C NMR spectrum for compound **27** (*Z*isomer major) in CDCl₃, 100 MHz

¹³C NMR spectrum for compound **28** ($Z \angle E$ isomer`s mixture) in CDCl₃, 100 MHz

¹³C NMR spectrum for compound **29** ($Z \angle E$ isomer`s mixture) in CDCl₃, 100 MHz

¹³C NMR spectrum for compound **30** ($Z \angle E$ isomer`s mixture) in CDCl₃, 100 MHz

 $^{19}\mathsf{F}$ NMR spectrum for compound 30 (CDCl_3, 376 MHz)

¹³C NMR spectrum for compound **31** ($Z \angle E$ isomer`s mixture) in CDCl₃, 100 MHz

¹³C NMR spectrum for compound **32** ($Z \angle E$ isomer`s mixture) in CDCl₃, 100 MHz

 ^{13}C NMR spectrum for compound **33** (Z/E isomer`s mixture) in CDCl₃, 100 MHz

88.88 88.05

 ^{13}C NMR spectrum for compound 39 in CDCl_3, 100 MHz

 ^{13}C NMR spectrum for compound 40 in CDCl_3, 100 MHz