ELECTRONIC SUPPLEMENTARY INFORMATION

Unlocking the biosynthetic regulation role of polyketide alkaloid lydicamycins

Xuanlin Zhan^{a,b}, Xiaojie Li^{a,b}, Yunyan Zeng^{a,b}, Siyan Jiang^a, Chao Pan^a, Shiyu Pan^a, Jiaquan Huang^{a*}, Heqian Zhang^{a*}, Zhiwei Qin^{a*}

^aCenter for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, 519087, China.

^bThese authors contributed equally to this work

E-mail: z.qin@bnu.edu.cn; zhangheqian@bnu.edu.cn; jiaquan_terry@bnu.edu.cn

1. Material and methods

1a. Generating *Streptomyces ginsengnesis* **G7 mutants.** Genomic DNA from *Streptomyces ginsengnesis* **G7** was isolated using the Hipure Bacterial DNA Kit (Magen). Fragments necessary for cloning were amplified via PCR using Phanta Max Super-Fidelity DNA Polymerase (Vazyme). The plasmid pIB139 was digested with *NheI* restriction enzyme and NEB buffer, following the manufacturer's instructions. Multiple DNA fragments were assembled into the digested vector backbones using the Trelief Seamless Cloning Kit (Tsingke). The final vector was propagated in *E. coli* DH5 α , and recombinants were verified through Sanger sequencing. Conjugation experiments were performed to introduce the final vector into *Streptomyces ginsengnesis* G7, using *E. coli* ET12567/pUZ8002 as previously described¹. Exconjugants were collected from the conjugation plates after incubation for 7 days under apramycin and nalidixic acid overlay. Subsequently, they were transferred to new plates and allowed to grow for an additional 7 days under apramycin selection. Single colonies resulting from this process were replica-plated onto apramycin-containing plates for phenotype screening and mutant verification by PCR.

1b. Lydicamycin congener analysis. Cultures of *Streptomyces ginsengnesis* wild-type and mutant strains were cultivated on International Streptomyces Projects 2 (ISP2) agar plates at a temperature of 30 °C. From each plate, three equally sized agar plugs (1 cm³) were extracted and vigorously shaken with 500 μ L of methanol for 5 minutes. Following this, the samples were centrifuged twice at 15,000 rpm for 5 minutes each time. The resulting extracts were subjected to High-Performance Liquid Chromatography (HPLC) analysis using the Agilent 1290 Infinity II system. The following chromatographic method was used throughout this work: Phenomenex

Kinetex C₁₈ column (100 × 2.1 mm, 100 Å); mobile phase A: water + 0.1% formic acid; mobile phase B: acetonitrile + 0.1% formic acid. Elution gradient: 0–1 min, 20% B; 1–12 min, 20%–100% B; 12–14 min, 100% B; 14–14.1 min, 100%–20% B; 14.1–17 min, 20% B; flow rate 0.3mL/min; injection volume 10 μ L.

1c. Molecular networking analysis. A molecular network was created using the online workflow (https://ccms-ucsd.github.io/GNPSDocumentation/) on the GNPS website (http://gnps.ucsd.edu)². The data was filtered by removing all MS/MS fragment ions within +/-17 Da of the precursor m/z. MS/MS spectra were window filtered by choosing only the top 6 fragment ions in the +/- 50Da window throughout the spectrum. The precursor ion mass tolerance was set to 0.1 Da and a MS/MS fragment ion tolerance of 0.1 Da. A network was then created where edges were filtered to have a cosine score above 0.1 and more than 6 matched peaks. Further, edges between two nodes were kept in the network if and only if each of the nodes appeared in each other's respective top 10 most similar nodes. Finally, the maximum size of a molecular families until the molecular family size was below this threshold. The spectra in the network were then searched against GNPS' spectral libraries. The library spectra were filtered in the same manner as the input data. All matches kept between network spectra and library spectra were required to have a score above 0.7 and at least 6 matched peaks.

2. ESI Tables

ESI Table 1. Strains, plasmids and primers used in this work.

Strain name	Description	Source or Ref.
<i>E. coli</i> ET12567	dam- dcm- hsdS-	[3]
E. coli DH5α	F– φ80lacZΔM15Δ(lacZYA- argF) U169 recA1 endA1 hsdR17 (rK– mK+) phoA supE44 λ- thi–1 gyrA96 relA1	Tsingke Biotechnology Co., Ltd., China
Streptomyces ginsengnesis G7	Wild-type strain	This work
StreptomycesginsengnesisG7_Alyd67	Mutant stain in which the LuxR regulation gene was deleted.	[4]
Streptomyces ginsengnesis G7_lyd67	Mutant stain in which the LuxR regulation gene was overexpressed.	This work
Plasmids and ePACs	Description	Source or Ref.
pIB139	pIB139 is used to overexpress a gene	From Professor Yu Yi
pUZ8002	Non-transmissible RK2 derivative with a mutation in <i>oriT</i>	[3]

Primer name	Sequence	Description
<i>ctg1_1131-</i> fwd	ggttggtaggatccacatatgATGGGTGGCTCAGAGCAGG	To amplify
<i>ctg1_1131-</i> rev	ctcgcccttgctCACGCTCTCTCCGCGGAGGGT	Lyd11 gene
<i>ctg1_1152-</i> fwd	ggttggtaggatccacatatgGTGATCAAGGTTCTCGTCACGGATG	To amplify
<i>ctg1_1152</i> -rev	ctcgcccttgctcacGGTGCCCAGGCCGGCG	<i>Lyd32</i> gene
<i>ctg1_1153</i> -fwd <i>ctg1_1153</i> -rev	ggttggtaggatccacatatgGAGCGGGTGAGGCGCGC ctcgcccttgctcacCGCCTTGACCTCGAAGGACTTCTTCT	To amplify <i>Lyd33</i> gene
<i>ctg1_1154</i> -fwd <i>ctg1_1154</i> -rev	gtgccggttggtaggatccacatatgAGTCCCAAGGCCATGGCCC ageteetegecettgeteacGTCGGGCGAGACGGGTGAG	To amplify Lyd34 gene
<i>ctg1_1163-</i> fwd <i>ctg1_1163-</i> rev	ggttggtaggatccacatatgGTGCCGCGTCCGGAGCAG ctcgcccttgctcacCCGGCTGAGGCCGCTCG	To amplify Lyd43 gene
<i>ctg1_1184</i> -fwd	ggttggtaggatccacatatgGTGCGTGTTGTCCTCGTAGAGG	To amplify Lyd64 gene

<i>ctg1_1184</i> -rev	ctcgcccttgctcacGTCCAGGTTCGCGCTGTTC	
<i>ctg1_1185</i> -fwd	ggttggtaggatccacatatgTTCGGACGGCACCTGTGG	To amplify
<i>ctg1_1185</i> -rev	ctcgcccttgctcacCGAGGACAACACGCACGG	Lyd65 gene
<i>ctg1_1187</i> -fwd	ggttggtaggatccacatatgGGGTTAGTGGAACGTGACGCGG	To amplify
<i>ctg1_1187</i> -rev	ctcgcccttgctcacGGCGATATCCGCGATGTCCGC	Lyd67 gene

ESI Table 2. The media used in this work.

Media	Recipe (per litre)	Water	рН	
LB	10 g tryptone	Deionised	7.5	
	5 g yeast extract			
	10 g NaCl			
	+/- 20 g agar			
MS	20 g soy flour	Тар	As made	
	20 g mannitol			
	20 g agar			
ISP2	4 g glucose	Тар	7.2	
	4 g yeast extract			
	10 g malt extract			
	10g agar			

ESI Table 3. The antibiotics and concentrations used in this work.

Antibiotic	iotic Final concentration used for selection (µg/ml)	
Apramycin	50/25	
Chloramphenicol	25	
Nalidixic Acid	25	

3. ESI References

1. T. Kiese, M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood, *Practical Streptomyces Genetics*, 2000.

2. M, Wang, et al. Nat Biotechnol. 2016, 34, 828-837.

3. A. C. Jones, B. Gust, A. Kulik, L. Heide, M. J. Buttner and M. J. Bibb, *PLoS ONE*, 2013, **8**, e69319.

4. H. Zhang, X. Li, S. Pan, J. Huang and Z. Qin, New J. Chem., 2023, 47, 12093-12100.