Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Porous single crystal microcubes of niobium nitride for

highly efficient electrocatalysis

Xuehua Li^{a, c}, Cong Luo^{b, c}, Guoming Lin^{*c, d}, Shaobo Xi^{*c, d} and Kui Xie^{*c, d}

^a College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China

^b College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China

^c Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

^d Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou 116023, China

Corresponding Authors E-mail: linguoming@fjirsm.ac.cn E-mail: xishaobo@fjirsm.ac.cn E-mail: kxie@fjirsm.ac.cn

Fig. S1 (a) The lattice channel of atomic evaporation of the (100) facet of NaNbO₃ substrates. (b) (100) orientation of NaNbO₃ single crystal after evaporation of Na atoms. (c) (001) orientation of PSC Nb₄N₅ monoliths (Na atoms are green, O atoms are gray, Nb atoms are white, N atoms are blue). (d) SEM image of PPC Nb₄N₅

/5.0K				Experimental values from EDS			Calculated values formula		
60.0K		Nb				Mole			Mole
52.5K				Nb(wt%)	N(wt%)	ratio Of	Nb(wt%)	N(wt%)	ratio of
45.0K						ND/N			IND/IN
37.5K			1	82.91	17.09	0.73			
30.0K									
22.5K			2	83.20	16.80	0.75	84.16	15.84	4: 5
15.0K		Nb							
7.5K	N		3	82.10	17.90	0.72			
0.0K 0.	.0 1.3	2.6	3.9	5.2	6.5	7.8	9.1	10.4 11	.7 13.0

Fig. S2 The element analysis of PSC Nb₄N₅. No oxygen residual is observed from EDS elemental analysis. The mole ratio between Nb and N is approximately at 4:5.

Fig. S3 ICP and CA results. Mole ratio between metal and nitrogen in PSC Nb_4N_5 and PPC $Nb_4N_5.$

Fig. S4 EDS mapping images of PSC Nb_4N_5 .

Fig. S5 (a, b) The surface specific area and BET average pore size of PSC Nb₄N₅ and PPC Nb₄N₅. (c) Nitrogen adsorption-desorption isotherm of PSC Nb₄N₅. (d) Nitrogen adsorption-desorption of PPC Nb₄N₅.

Fig. S6 (a) LSV curves of PSC Nb₄N₅, PPC Nb₄N₅ and Pt/C in 1 M KOH solution with a scan rate 5 mV s⁻¹. (b) Tafel slope of PSC Nb₄N₅, PPC Nb₄N₅ and Pt/C. (C) Nyquist plots of PSC Nb₄N₅, PPC Nb₄N₅ and Pt/C. (d) The durability test of PSC Nb₄N₅, PPC Nb₄N₅ and Pt/C for 20 h.

Fig. S7 CVs of (a) PSC Nb₄N₅ and (c) PPC Nb₄N₅ hexahedron catalysts at 10-100 mV s⁻¹ in 0.5 M H₂SO₄ solution; (b) Plots providing the C_{dl} value of PSC Nb₄N₅ catalyst. (d) Plots providing the C_{dl} value of PPC Nb₄N₅ catalyst.

Fig. S8 Calculated exchange current densities of the PSC Nb_4N_5 and PPC Nb_4N_5 in 0.5 M H_2SO_4 electrolyte by applying extrapolation method to the Tafel plots.

Catalyst	η(mV)at j=10mA cm ⁻²	Tafel slope	Electrolyte	references
PSC Nb ₄ N ₅	71.86 mV	70.26 mV dec ⁻¹	0.5 M H ₂ SO ₄	This work
$PPC Nb_4N_5$	191.51 mV	169.02 mV dec ⁻¹	0.5 M H ₂ SO ₄	This work
Nb ₂ N	96.3 mV	92 mV dec ⁻¹	0.5 M H ₂ SO ₄	[1]
Sr ₂ RuO ₄	61 mV	51 mV dec ⁻¹	1 M KOH	[2]
Nb ₄ N ₅ -xOx/NG	39 mV	79 mV dec ⁻¹	0.5 M H ₂ SO ₄	[3]
PSC Mo ₂ N	73.13 mV	66.52 mV dec ⁻¹	1 M KOH	[4]
PSC VN	74.67 mV	68.30 mV dec ⁻¹	1 M KOH	[5]
Nb-Ti NNA	120 mV	52.90 mV dec ⁻¹	1 M KOH	[6]
Co-NG	30 mV	82 mV dec ⁻¹	0.5 M H ₂ SO ₄	[7]
C-MoS ₂	45 mV	46 mV dec ⁻¹	1 M KOH	[8]
NiN	210 mV	122 mV dec ⁻¹	1 M KOH	[9]

Table S1. The comparison of HER electrocatalytic performance.

References

- 1 Y. Li, J. Zhang, X. Qian, Y. Zhang, Y. Wang, R. Hu, C. Yao and J. Zhu, *Applied Surface Science*, 2018, **427**, 884-889.
- 2 Y. Zhu, H. A. Tahini, Z. Hu, J. Dai, Y. Chen, H. Sun, W. Zhou, M. Liu, S. C. Smith, H. Wang and Z. Shao, *Nature Communications*, 2019, **10**, 149.
- 3 Y. Yang, Y. Wang, H.-L. He, W. Yan, L. Fang, Y.-B. Zhang, Y. Qin, R. Long, X.-M. Zhang and X. Fan, *ACS Nano*, 2020, **14**, 4925-4937.
- 4 S. Yunqi, L. Jiaming, L. Guoming and X. Kui, *International Journal of Hydrogen Energy*, 2021, 46, 21777-21784.
- 5 X. Yu, F. Cheng and K. Xie, *New Journal of Chemistry*, 2022, **46**, 1392-1398.
- H. Zhang, X. Chen, Z. Lin, L. Zhang, H. Cao, L. Yu and G. Zheng, *International Journal of Hydrogen Energy*, 2020,
 45, 6461-6475.
- H. Fei, J. Dong, M. J. Arellano-Jiménez, G. Ye, N. Dong Kim, E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J.
 Yacaman, P. M. Ajayan, D. Chen and J. M. Tour, *Nature Communications*, 2015, 6, 8668.
- 8 Y. Zang, S. Niu, Y. Wu, X. Zheng, J. Cai, J. Ye, Y. Xie, Y. Liu, J. Zhou, J. Zhu, X. Liu, G. Wang and Y. Qian, *Nature Communications*, 2019, **10**, 1217.
- 9 W. Hua, H. Sun, H. Liu, Y. Li and J.-G. Wang, *Applied Surface Science*, 2021, **540**, 148407.