Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Metal-organic Frameworks constructed with acid-base mixed ligands carboxylic acids and N-containing chalcone and their catalytic performance for Knoevenagel condensation

Limin Cheng, Junyong Zhang, Caihong Zhan,* Hao Xu, Chunhua Gong,* Jingli Xie*

MOFs	1	2	3		
Empirical formula	C45H36CdN6O8	C50H47CdN7O9	C ₅₀ H ₄₇ CoN ₇ O ₉		
Formula weight	901.20	1002.34	948.87		
Temperature (K)	300	300.15	300.15		
Crystal system	triclinic	triclinic	triclinic		
Space group	Pl	PĪ	Pl		
a (Å)	8.7214(9)	9.6539(4)	9.6124(3)		
b (Å)	15.1141(14)	14.9335(6)	14.9026(5)		
c (Å)	17.2898(19)	17.6393(7)	17.2025(6)		
α (°)	114.157(10)	81.467(3)	82.802(3)		
eta (°)	95.733(9)	82.719(3)	81.793(3)		
γ (°)	94.009(9)	89.187(3)	87.487(3)		
$V(Å^3)$	2053.6(4)	2494.54(18)	2418.92(15)		
Z	2	2	2		
Dc (g/cm ³)	1.338	1.334	1.303		
$\mu (\mathrm{mm}^{-1})$	4.703	4.007	3.297		
F (000)	838	1032.0	990.0		
	Cu-Ka	Cu-Ka	Cu-Ka		
Radiation	$(\lambda = 1.54184)$	$(\lambda = 1.54184)$	$(\lambda = 1.54184)$		
Reflections collected	11681	14420	36110		
Independent reflections	7754	9410	9814		
R _{int}	0.0818	0.0427	0.1540		
Data/restraints/parameters	7755/269/590	9410/589/876	9814/467/876		
GOF on F^2	0.984	1.088	0.997		
$R_{I}/wR_{2}\left[I>2\sigma\left(I\right)\right]$	0.0673/0.1514	0.0524/0.1412	0.0731/0.1725		
R_1/wR_2 [all data]	0.1078/0.1830	0.0595/0.1485	0.1375/0.2154		
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} . \ {}^{b}wR_{2} = (\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}])^{1/2}$					

Table S1. Crystal data and structure refinements for MOFs 1–3

Fig. S1 PXRD pattern and TGA curve of 1.

Fig. S3 PXRD pattern and TGA curve of 3.

Fig. S4 IR spectra of 1, 2, and 3.

Fig. S5 PXRD patterns of 1, 2, and 3 soaked in different solvents.

Fig. S6 PXRD patterns for water-, acid- and alkali-treated 1-3.

Fig. S7 Variabletemperature PXRD patterns of 1-3.

Fig. S8 Topology analysis of 1.

New topology Schläfli symbol: (3·4·5)(3²·4⁴·5⁵·6⁴)

Fig. S10 Topology analysis of 3.

(b)

Fig. S11 The ellipsoid diagram of dinuclear metal unit in 1-3.

Fig. S12 Kinetics curves of Knoevenagel condensation catalyzed by 1 at 25°C

Fig. S13 Catalyst recycling experiments in the Knoevenagel condensation of benzaldehyde with propanedinitrile catalyzed by 1.

Fig. S14 (a) PXRD patterns and (b) IR spectra of 1 after catalytic reaction

Electronic Supplementary Information (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry 2023

Fig. S15 Examples for integration of ¹H NMR spectra for the determination of Knoevenagel condensation products.

Table S2. Comparison of the catalytic activity of various MOFs for the Knoevenagel condensation reaction

MOF	catalyst (mol%)	solvent	temperature (°C)	time (h)	yield (%)	refs
[Zn ₂ (TCA)(BIB) _{2.5}](NO ₃)	0.3	C ₂ H ₅ OH	60	1	99	1
$\{[Cu_2(\mu_3\text{-}pdba)_2(bipy)]\cdot 2H_2O\}_n$	2	CH ₃ OH	RT	1	>99	2
$Cd_2(2\text{-bpbg})(fum)_2(H_2O)_2$	1	-	27	3	100	3
Cd-CDA-MOF	0.4	C ₂ H ₅ OH	RT	12	98	4
$\label{eq:constraint} \begin{split} & [Zn_{15}(mbpz)_6(Hmbpz)_6\\ & (L-NO_2)_4(HL-NO_2)(\mu_3\text{-}OH)_2]_n \end{split}$	0.6	-	80	1	>99	5
NUC-58a	0.5	C ₂ H ₅ OH	65	7	98	6
[Co ₂ (bptc)(H ₂ O) ₂]·5DMA	2	-	60	6	99	7
1	2	CH ₃ OH	25	1.5	100	this work
2	2	CH ₃ OH	25	1.5	99	this work
3	2	CH ₃ OH	25	1.5	96	this work

		1	
Cd1-O3 ⁱ	2.335(6)	Cd1-N2	2.325(6)
Cd1-O2	2.232(5)	Cd1-O5 ⁱⁱ	2.363(6)
Cd1-O4 ⁱⁱ	2.414(5)	Cd1-N1 ⁱⁱⁱ	2.331(7)
O3 ⁱ -Cd1-O4 ⁱⁱ	86.65(18)	O5 ⁱⁱ -Cd1-O4 ⁱⁱ	55.05(18)
O3 ⁱ -Cd1-O5 ⁱⁱ	141.70(18)	N1 ⁱⁱⁱ -Cd1-O3 ⁱ	83.2(2)
N2-Cd1-N1 ⁱⁱⁱ	168.1(2)	N1 ⁱⁱⁱ -Cd1-O4 ⁱⁱ	88.4(2)
O2-Cd1-O3 ⁱ	125.3(2)	N1 ⁱⁱⁱ -Cd1-O5 ⁱⁱ	93.7(2)
O2-Cd1-O4 ⁱⁱ	147.8(2)	N2-Cd1-O3 ⁱ	85.9(2)
O2-Cd1-O5 ⁱⁱ	92.9(2)	N2-Cd1-O4 ⁱⁱ	86.3(2)
O2-Cd1-N1 ⁱⁱⁱ	91.4(2)	N2-Cd1-O5 ⁱⁱ	92.0(2)
O2-Cd1-N2	98.8(2)		

Symmetry codes: (i) *1-x*, *1-y*, *2-z*; (ii) *x*, *1+y*, *1+z*; (iii) *x*, *-1+y*, *1+z*.

	2		
Cd1-O1	2.187(3)	Cd1-O6 ⁱⁱ	2.402(3)
Cd1-O2 ⁱ	2.312(3)	Cd1-N2 ⁱⁱⁱ	2.302(3)
Cd1-O5 ⁱⁱ	2.375(3)	Cd1-N1	2.332(3)
O1-Cd1-O2 ⁱ	121.72(13)	O5 ⁱⁱ -Cd1-O6 ⁱⁱ	55.01(11)
O1-Cd1-O5 ⁱⁱ	147.87(12)	N2 ⁱⁱⁱ -Cd1-O2 ⁱ	85.43(13)
O1-Cd1-O6 ⁱⁱ	92.91(12)	N2 ⁱⁱⁱ -Cd1-O5 ⁱⁱ	89.41(13)
O1-Cd1-N2 ⁱⁱⁱ	97.49(14)	N2 ⁱⁱⁱ -Cd1-O6 ⁱⁱ	97.35(14)
O1-Cd1-N1	90.74(15)	N2 ⁱⁱⁱ -Cd1-N1	169.13(13)
O2 ⁱ -Cd1-O5 ⁱⁱ	90.00(12)	N1-Cd1-O5 ⁱⁱ	87.33(13)
O2 ⁱ -Cd1-O6 ⁱⁱ	144.72(12)	N1-Cd1-O6 ⁱⁱ	89.27(14)
O2i-Cd1-N1	84.21(13)		

Symmetry codes: (i) -1-x, 1-y, 2-z; (ii) +x, +y, 1+z; (iii) -1+x, 1+y, +z.

3					
Col-Ol	1.999(3)	Co1-O6 ⁱⁱ	2.261(3)		
Co1-O2 ⁱ	2.032(3)	Co1-N2 ⁱⁱⁱ	2.160(3)		
Co1-O5 ⁱⁱ	2.122(3)	Col-N1	2.157(3)		
O1-Co1-O2 ⁱ	112.87(13)	O2 ⁱ -Co1-N1	87.26(13)		
O1-Co1-O5 ⁱⁱ	154.64(14)	O5 ⁱⁱ -Co1-O6 ⁱⁱ	59.81(12)		
O1-Co1-O6 ⁱⁱ	94.87(12)	O5ii-Co1-N2 ⁱⁱⁱ	89.62(12)		

O1-Co1-N2 ⁱⁱⁱ	94.33(13)	O5 ⁱⁱ -Co1-N1	87.93(13)
O1-Co1-N1	90.30(13)	N2 ⁱⁱⁱ -Co1-O6 ⁱⁱ	94.97(13)
O2 ⁱ -Co1-O5 ⁱⁱ	92.31(13)	N1-Co1-O6 ⁱⁱ	88.71(13)
O2 ⁱ -Co1-O6 ⁱⁱ	151.97(12)	N1-Co1-N2 ⁱⁱⁱ	173.81(14)
O2 ⁱ -Co1-N2 ⁱⁱⁱ	87.16(13)		

Symmetry codes: (i) -1-x, 1-y, 2-z; (ii) +x, +y, 1+z; (iii) -1+x, 1+y, +z.

D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<d-h···a< th=""></d-h···a<>	
1					
$C41$ - $H41$ ···· $O1^{i}$	0.931	2.645	3.329	130.78	
C16-H16…O5 ⁱⁱ	0.931	2.678	3.401	135.18	
$C10{\cdots}H10B{\cdots}O1^{iii}$	0.971	2.691	3.351	125.69	
$C5-H5\cdots O2^{iv}$	0.93	2.678	3.309	125.72	
C1-H1…O4 ^v	0.931	2.702	3.28	121.09	
Symmetry codes: (i) x, .	2+ <i>y</i> , <i>z</i> + <i>1</i> ; (ii) 2	2-x, -y, 1-z; (iii) 3	<i>-x, 2-y, 2-z</i> ; (iv)	<i>x, 1+y, z</i> ; (v)	
x, 2+y, z+1					
2					
$C5-H5\cdots O5^i$	0.931	2.452	3.130	129.84	
C41-H41…O9 ⁱⁱ	0.929	2.685	3.238	129.09	
Symmetry codes: (i) <i>1+x</i> , - <i>1+y</i> , <i>z+1</i> ; (ii) - <i>1-x</i> , - <i>y</i> , <i>2-z</i>					
3					
$C41$ - $H41$ ···O 2^{i}	0.929	2.713	3.615	163.94	
C5-H5…O5 ⁱⁱ	0.930	2.299	2.943	125.93	
Symmetry codes: (i) - <i>x</i> , - <i>y</i> , 2- <i>z</i> ; (ii) 1+ <i>x</i> , -1+ <i>y</i> , 1+ <i>z</i>					

Table S4. The hydrogen-bonding geometry	(Å,	, °) of MOFs 1-	-3
---	-----	-----------------	----

References:

- C. Yao, S. Zhou, X. Kang, Y. Zhao, R. Yan, Y. Zhang and L. Wen, *Inorg. Chem.*, 2018, 57, 11157-11164.
- X. Cheng, L. Guo, H. Wang, J. Gu, Y. Yang, M. V. Kirillova and A. M. Kirillov, *Inorg. Chem.*, 2022, 61, 17951-17962.
- 3. D. Markad, S. Khullar and S. K. Mandal, *ACS Applied Nano Materials*, 2018, 1, 5226-5236.
- 4. A. Goswami, P. Dutta and K. Biradha, CrystEngComm, 2023.
- 5. G. Q. Huang, J. Chen, Y. L. Huang, K. Wu, D. Luo, J. K. Jin, J. Zheng, S. H. Xu and W. Lu, *Inorg. Chem.*, 2022, **61**, 8339-8348.
- 6. H. Lv, H. Chen, L. Fan and X. Zhang, *Inorg. Chem.*, 2022.
- 7. J. Deng, X. Wang, Z. Ni and F. Zhu, Arab. J. Chem., 2020, 13, 7482-7489.