Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementry Information

Investigating binding of organic charge transfer co-crystal to human serum albumin by experimental and theoretical methods: Spectroscopy, molecular docking and DFT/TD-DFT studies

Ishaat M. Khan^{*}a, Arshi Khan^a, Sonam Shakya^a, Mohammad Osama^a, Maidul Islam^{a,b}, Farha Naaz^a, Musheer Ahmad^c

^a Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh-202002, India ^b Research and Development Cell, Lovely Professional University, Phagwara, Punjab-144411, India ^cDepartment of Applied Chemistry, Aligarh Muslim University, Aligarh 202002, India

Compound Frequency (cm⁻¹) Assignments 1,2,4,5-Benzenetetracarboxylic acid 3439 O-H (free)str >C=O 1668 1613 >C=C< 1350/1267/1309 >C-O str, 981 C-C str 1449 OH bend 850 C-O wag assym 691 O-H tors 570 C-C tors ,O-H tors 2 – Ethylimidazole 3150 N-H str 3108 C-H str 1675 C=C,C=N 1575 N-H bending CH2 bending 1453 1432 C-N ring **CT** complex 3122 O-H str 1625 >C=O 1537 >C=C<

Table S1. FT-IR Band Assignments (cm-1) for BTC, 2-EIM, and the CT Complex

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for CT complex. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
O2	2764(3)	2358.1(11)	5403.5(9)	47.9(4)
O3	5332(3)	5389.1(10)	6727.9(8)	48.7(4)
01	-868(3)	2047.9(10)	4533.8(9)	50.0(4)
O4	4349(3)	7000.6(10)	6308.3(9)	53.2(4)
N1	7404(3)	2196.8(12)	6512.5(9)	38.6(4)
N2	10862(3)	1647.4(12)	7315.6(10)	39.3(4)
С9	1820(3)	5563.9(13)	5593.0(9)	27.6(4)
C7	205(3)	3878.3(12)	4926.6(9)	27.4(4)
C8	1929(3)	4468.9(13)	5496.5(10)	29.8(4)
C6	782(3)	2688.3(13)	4956.4(10)	33.0(4)
C10	3972(3)	6011.1(14)	6257.7(10)	31.7(4)
C3	8941(3)	1348.4(14)	6711.9(11)	36.5(4)
C1	8384(4)	3050.4(15)	6983.3(12)	44.1(5)
C2	10562(4)	2702.0(16)	7490.0(12)	46.0(5)
C4	8682(4)	296.9(16)	6289.2(15)	51.1(5)
C5	5847(4)	-135.6(18)	6166.6(16)	58.1(6)

Table S3. Anisotropic Displacement Parameters (Å²×10³) for CT complex. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
O2	43.9(8)	35.0(7)	57.3(8)	8.1(6)	-25.0(6)	-1.4(6)
O3	51.5(8)	34.3(7)	50.7(8)	-0.5(6)	-33.6(6)	0.7(6)
01	52.4(8)	28.3(7)	60.4(9)	-1.3(6)	-29.7(7)	-3.3(6)
O4	53.4(9)	30.4(7)	65.6(9)	-4.4(6)	-35.1(7)	-2.4(6)
N1	32.2(8)	39.8(9)	39.2(8)	5.6(6)	-14.6(6)	0.7(6)
N2	33.9(8)	37.0(8)	42.0(8)	6.0(6)	-15.5(6)	3.1(6)
C9	24.9(7)	29.7(8)	25.7(7)	-1.1(6)	-7.1(6)	-0.6(6)
C7	25.6(7)	27.4(8)	27.1(7)	-0.3(6)	-5.8(6)	0.6(6)
C8	26.4(8)	29.9(8)	30.0(8)	1.6(6)	-9.6(6)	2.0(6)
C6	33.3(9)	29.0(8)	33.6(8)	2.2(7)	-9.4(7)	-0.8(6)
C10	28.4(8)	32.5(8)	30.6(8)	-1.1(6)	-10.6(6)	-2.0(6)
C3	29.1(8)	35.4(9)	41.7(9)	1.7(7)	-9.0(7)	2.9(7)
C1	46.0(10)	34.6(10)	47.5(10)	9.6(8)	-11.9(8)	-2.6(8)
C2	47.4(11)	39.3(10)	45.8(10)	5.2(8)	-17.5(9)	-6.9(8)
C4	39.8(10)	39.5(11)	70.0(14)	1.9(8)	-8.9(9)	-6.4(10)
C5	47.0(12)	46.5(12)	75.9(15)	-1.9(10)	-12.8(11)	-7.6(11)

Table S4. Bond	Lengths f	for CT	complex.
----------------	-----------	--------	----------

Atom	n Atom	Length/Å	Aton	n Atom	Length/Å
O2	C6	1.219(2)	C9	$C7^1$	1.413(2)
O3	C10	1.232(2)	C9	C8	1.391(2)
01	C6	1.284(2)	C9	C10	1.524(2)
O4	C10	1.262(2)	C7	C8	1.391(2)
N1	C3	1.330(2)	C7	C6	1.527(2)
N1	C1	1.370(2)	C3	C4	1.488(3)
N2	C3	1.330(2)	C1	C2	1.346(3)
N2	C2	1.370(2)	C4	C5	1.498(3)

Table S5. Bond Angles for CT complex.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C3	110.10(15)	C7	C6	01	119.72(14)
C2	N2	C3	109.78(15)	04	C10	03	121.55(14)
C8	C9	C7 ¹	117.54(14)	C9	C10	O3	118.68(15)
C10	C9	C7 ¹	128.14(15)	C9	C10	O4	119.76(14)
C10	C9	C8	114.32(14)	N2	C3	N1	106.69(16)
C8	C7	C91	117.33(15)	C4	C3	N1	126.23(16)
C6	C7	C91	128.66(14)	C4	C3	N2	126.90(16)
C6	C7	C8	114.01(13)	C2	C1	N1	106.45(16)
C7	C8	C9	125.13(14)	C1	C2	N2	106.97(16)
01	C6	O2	120.96(16)	C5	C4	C3	114.35(18)
C7	C6	O2	119.27(15)				

Table S6. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for CT complex.

Atom	x	у	z	U(eq)	
H1	6000(3)	2208	.1(12) 6142.0(9)	40	5.4(5)
H2	12105(3)	1240.	.1(12)7560.0(10)	47	7.1(5)
H8	3259(3)	4102.	.8(13) 5839.9(10)	35	5.8(4)
Hla	7682(4)	3735.	.4(15)6957.8(12)	52	2.9(6)
H2a	11656(4)	3101.	.0(16)7883.6(12)	55	5.2(6)
H4a	9335(4)	358.	.0(16) 5745.8(15)	6	1.3(6)
H4b	9843(4)	-206	.1(16)6618.8(15)	61	1.3(6)
H5a	4656(8)	3	5869(10)	87	7.1(9)
H5b	5816(8)	-7	781(7) 5849(9)	87	7.1(9)
H5c	5253(14)	-27	76(13)6703.0(16)	87	7.1(9)

Table S7. BTC, 2-EIM, and [(BTC)(2-EIM)] CT complex weight loss (%), enthalpy (H), and degradation temperature (T).

Step	1,24,5- benzenetetracarbox ylic acid Weight loss (%)	T (°C)	ΔH (J/g)	2-Eth- ylimidaz ol Weight loss (%)	T(ºC)	ΔH(J/g)	CT(comple x) Weight loss (%)	T (ºC)	ΔH (J/g)
1	-14.03 -87.30	92.0 4 290. 8	- 99.8 1 - 18.6 2	99.8	222	-06.27	-86.95	234.5 5	- 109. 4

Table S8. Docking log file of HAS-CT complex system (saving top 9 orientations), $E_{min} = -$ 8.8 kcal/mol.

mode | affinity | dist from best mode

| (kcal/mol) | rmsdl.b.| rmsdu.b.

+		+	+
1	-8.8	0.000	0.000
2	-8.2	1.876	3.685
3	-8.2	2.239	3.086
4	-8.0	1.554	3.759
5	-7.9	14.290	16.498
6	-7.7	18.464	20.554
7	-7.6	4.343	7.135
8	-7.5	19.653	21.920
9	-7.3	19.415	23.412

Steady-state fluorescence study of HSA with CTC; excitation of Tryptophan only:

Figure S1. Tryptophan excitation of HSA at 295 nm and its titration with CTC; [A] quenching of the intensity maxima of HSA upon addition of CTC, [B] Stern-volmer plot, [C] modern Stern-volmer plot for determination of binding constant.

Table S9. Quenching and binding parameters obtained for HSA and CTC interaction from

 spectrofluorometric study

	K _{SV} (M ⁻¹)	$k_q(M^{-1}s^{-1})$	R ²	$K_b(M^{-1})$	n	R ²	$\Delta G (kJ mol^{-1})$
CT Complex	8.02×10 ²	8.02×10 ¹⁰	0.99	7.44×10 ²	1.24	0.98	-16.384

Figure S2. The Benesi–Hildebrand plots to determine binding constant using changes in absorption spectra of HAS-CT complex.