Electronic Supporting information

Novel heteroleptic copper(I) complexes merging the chelating 1,2bis-diphenyldiphosphine and various L^X type coligands

J. Moussa,* and G. Gontard

X-Ray crystal structure determination. Single crystals were selected, mounted and transferred into a cold nitrogen gas stream. Intensity data was collected with a Bruker Kappa-APEX2 system using micro-source Cu-Kα radiation. Unit-cell parameters determination, data collection strategy, integration and absorption correction were carried out with the Bruker APEX2 suite of programs. The structures were solved with SIR92^{C1} (**2**) or SIR97^{C1} (**2**) and refined anisotropically by full-matrix least-squares methods with SHELXL^{C2} using WinGX.^{C3} Absolute structure for (**2**) was determined by anomalous scattering effects analysis.^{C4} Both structures were deposited at the Cambridge Crystallographic Data Centre with numbers CCDC 1942668 and 1943248. These can be obtained free of charge via www.ccdc.cam.ac.uk.

Crystal data for 2. $C_{40}H_{32}CuNOP_2$, orthorhombic P m n 2_1 , a = 17.3563(2) Å, b = 11.8638(2) Å, c = 8.1509(1) Å, $\alpha = \beta = \gamma = 90^\circ$, V = 1678.37(4) Å³, Z = 2, yellow needle $0.9 \times 0.15 \times 0.02$ mm, $\mu = 2.064$ mm⁻¹, min / max transmission = 0.43 / 1.00, T= 200(1) K, $\lambda = 1.54178$ Å, θ range = 3.73° to 66.56°, 10246 reflections measured, 2286 independent, $R_{int} = 0.0295$, completeness = 0.991, 224 parameters, 1 restraint, Flack x = -0.00(2), final R indices R1 [I>2 σ (I)] = 0.0232 and wR2 (all data) = 0.0632, GOF on F² = 1.046, largest difference peak / hole = 0.20 / -0.20 e.Å⁻³.

Crystal data for 3. $C_{37}H_{30}CuNO_2P_2$, monoclinic P $2_1/n$, a = 8.3072(2) Å, b = 18.5057(4) Å, c = 19.9706(4) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 94.867(1)^{\circ}$, V = 3059.02(12) Å³, Z = 4, colourless needle 0.15 x 0.03 x 0.02 mm, $\mu = 2.270$ mm⁻¹, min / max transmission = 0.68 / 0.75, T = 200(1) K, $\lambda = 1.54178$ Å, θ range = 3.27° to 68.52°, 26598 reflections measured, 5504 independent, $R_{int} = 0.0318$, completeness = 0.980, 389 parameters, 0 restraints, final R indices R1 [I>2 σ (I)] = 0.0299 and wR2 (all data) = 0.0767, GOF on F² = 1.020, largest difference peak / hole = 0.29 / -0.30 e.Å⁻³.

- C1- A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi , J. Appl. Cryst. 1993, 26, 343-350.
- C2- G. M. Sheldrick, Acta Cryst. C 2015, 71, 3-8.
- C3- L.J. Farrugia, J. Appl. Cryst. 2012, 45, 849-854.
- C4- H. D. Flack and G. Bernardinelli, J. Appl. Cryst. 2000, 33, 1143-1148.

Figure S2: ³¹P-NMR spectrum of compound [Cu(Me-Q)(dppb)] (2) in CD₂Cl₂

Figure S3: ¹³C-NMR spectrum of compound [Cu(Me-Q)(dppb)] (2) in CD₂Cl₂

Figure S4: ATR-Infrared spectrum of compound [Cu(Me-Q)(dppb)] (2)

Figure S5: ¹H-NMR spectrum of compound [Cu(Me-Pic)(dppb)] (3) in CD₂Cl₂

Figure S6: ³¹P-NMR spectrum of compound [Cu(Me-Pic)(dppb)] (3) in CD₂Cl₂

Figure S7: ¹³C-NMR spectrum of compound [Cu(Me-Pic)(dppb)] (3) in CD₂Cl₂

Figure S8: ATR-Infrared spectrum of compound [Cu(Me-Pic)(dppb)] (3)

Figure S10: ³¹P-NMR spectrum of compound [Cu(pbim)(dppb)] (4) in CD₂Cl₂

Figure S11: ¹³C-NMR spectrum of compound [Cu(pbim)(dppb)] (4) in CD₂Cl₂

Figure S12: ATR-Infrared spectrum of compound [Cu(pbim)(dppb)] (4)