Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Room Temperature Synthesis of Highly Luminescent Eu³⁺ and Tb³⁺ doped hexagonal-phase YPO₄ Nanoparticle with Tunable Emission

Laishram Peter Singh, Potshangbam Sorodhoni Devi, Aribam Rishikanta Sharma, Laishram Priyabati Devi, W. Rameshwor Singh* and Raju Laishram*

Department of Chemistry, Manipur University, Manipur-795003

Email: dr.rmsingh@yahoo.co.in and rajulaishram007@gmail.com

Experimental Details

Reagents and Solutions

All the chemical used in the experiment were procured from Sigma Aldrich and were used as received. All the solutions were prepared using distilled water. The sample of $Ln^{3+}(10\%)$ doped YPO₄ (i.e., YPO₄:10% Eu³⁺) was prepared using a coprecipitation method at room temperature. In the typical synthetic procedure of 10 % Eu³⁺ doped YPO₄ (YPO₄:10% Eu³⁺), 0.940 g of YNO₃ and 0.128g of Eu (NO)₃.5H₂O were mixed together in 50 ml beaker. To this, we add 0.3105 g of NH₄H₂PO₄ and dissolved in 10 ml distilled water. The solution was stirred for 1hr at around 700 rpm. The precipitate so obtained was then separated by centrifugation at 12000 rpm for 5 min followed by continuously washing (4 to 5 times) with water followed by acetone. The prepared sample was finally dried at room temperature for two days.

Instrumentation

pXRD:

Powder X-ray diffraction patterns of samples were recorded using PAN analytical powder diffractometer (X'Pert PRO) with CuK α (1.5405Å) radiation (40kV and 30mA) with a step size of 0.02 and scan step time 0.3 s in the angular range of $2\theta = 10^{\circ} \le 2\theta \le 80^{\circ}$.

Photoluminescence (PL)

Photoluminescence Emission Spectra, Excitation Spectra, Emission Lifetime and Quantum Yield of the samples were recorded at Edinburgh FLS980 Fluorimeter equipped with Multichannel Scaling (MCS) and Integrating Sphere.

TEM

TEM images were recorded using Field Emission Transmission electron microscope (200 kv, JEOL India, Pvt, Ltd. Model :2100F).

Supporting Figures and Tables

Fig. SI1 (a-c) TEM images of YPO₄:10% Eu³⁺

Fig. SI2 (a-c) TEM images of YPO4:10% Tb^{3+} (d) HRTEM image of YPO4:10% Tb^{3+} (e) SAED pattern of YPO4:10% Tb^{3+}

Fig. SI3 (a-c) TEM images of YPO₄: 7% Tb³⁺, 3% Eu³⁺ (d) HRTEM image of YPO₄:7% Tb³⁺, 3% Eu³⁺ (e) SAED pattern of YPO₄:7% Tb³⁺, 3% Eu³⁺

Fig. SI4 (a) Excitation spectra of YPO₄:10% Eu³⁺ (λ_{em} = 700 nm) and YPO₄:10% Tb³⁺ (λ_{em} = 545 nm) (b) Zoom out image of Fig. a, there is an overlap between YPO₄:10% Eu³⁺ and YPO₄:10% Tb³⁺, there is an overlap between them at 378 nm and it was used as the excitation wavelength for measuring all the emission spectra.

Fig. SI5 (a) Emission Spectra of YPO₄:Tb³⁺, Eu³⁺ at different Tb:Eu ratio (λ_{ex} = 378 nm) (b) CIE plot of YPO₄: Tb, Eu at different Tb:Eu ratio

Table SI1. Fluorescence Lifetime of Tb³⁺ and Eu³⁺

Samples	τı in μs	τ₂in μs	τ₃in μs	τ _{avg.} in μs	χ^2
	(%)	(%)	(%)		
Eu in YPO4:0% Tb ³⁺ , 10% Eu ³⁺	384.8	901.8	0	389.0	1.0
	(99.2)	(0.8)			
Eu in YPO4:7% Tb ³⁺ , 3% Eu ³⁺	426.6	1405.4	2979.9	865.4	1.2
	(75.1)	(12.5)	(12.4)		
Tb in YPO4:10% Tb ³⁺ ,0% Eu ³⁺	8.6	100.0	1100.6	1082.9	1.0
	(1.4)	(0.2)	(98.4)		
Tb in YPO4:7% Tb ³⁺ , 3% Eu ³⁺	9.9	306.1	1040.8	944.6	1.0
	(2.9)	(9.0)	(88.1)		

Fig. SI6. Quantum Yield plot of Ln doped YPO₄ nanoparticles using FLS980 Fluorimeter's Integrating Sphere

Fig. SI7 (a) pXRD spectra of YPO₄:10% Eu³⁺ and YPO₄:10% Eu³⁺, 5% Li⁺ (b) Zoom out of (a), decreased in 2θ and sharper peak is evident from the decreased in full width half maxima (FWHM)

Fig. SI8 (a) Emission spectra of YPO₄:10% Tb³⁺, 0% Li⁺ and YPO₄:10% Tb³⁺, 5% Li⁺ (b) YPO₄:7% Tb³⁺,3% Eu⁺, 0% Li⁺ and YPO₄:7% Tb³⁺,3% Eu³⁺, 5% Li⁺ (c) Decay Plot of YPO₄:10%Eu³⁺, Li⁺, at different Li⁺ % (d) Decay plot of Fig. (a-b).

Fig. SI9. Quantum Yield plot of Li⁺ doped YPO₄: Ln nanoparticles using FLS980 Fluorimeter's Integrating Sphere

τ_{avg.} in μs Samples τ₃ in μs **τ**₁ in μs T_2 in μs (%) (%) (%) Eu in YPO4:10% Eu³⁺, 1% Li⁺ 397.0 1564.1 723.1 2.0 (0.1)(72.0)(28.0)Eu in YPO4:10% Eu³⁺, 2.5% Li⁺ 20.0 432.5 1113.3 1664.7 (44.7)(0.1) (55.3) Eu in YPO4:10% Eu³⁺, 5% Li⁺ 571.9 905.8 2422.6 1026.3

 χ^2

1.3

1.2

1.3

Table SI2. Fluorescence lifetime of Eu in sample Fig. SI8c

Table SI3. Fluorescence lifetime of Eu in sample Fig. SI8d

Samples	τ1 in μs (%)	τ2in μs (%)	τ3 in μs (%)	τ _{avg.} in μs	χ²
Tb in YPO4:10% Tb ³⁺ , 5% Li ⁺	2.5 (0.1)	425.0 (0.2)	1321.4 (99.7)	1318.6	1.0
Tb in YPO4:7% Tb ³⁺ , 3% Eu ³⁺ , 5% Li ⁺	8.6 (0.1)	800.1 (44.4)	1383.3 (55.5)	1123.5	1.2
Eu in YPO4:7% Tb ³⁺ , 3% Eu ³⁺ , 5% Li ⁺	3.9 (0.1)	663.0 (38.8)	2522.5 (61.1)	1799.2	1.2

(56.7)

(22.9)

(20.4)