Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

> Photocatalytic evaluation of CuO and ZnO crystallites synthesized hydrothermally using binary Eugenol /iso-eugenol mixtures. Isomer effect on capping propensity of biogenic agents

Tabee Jana, S. V. Sawantb, T. V. Manolikarb, S.S.Sakateb, S.K. Pardeshic, R. M. Jagtapbc* and

Masood Ahmad Rizvi^{a*}

^a Department of Chemistry, *Progressive Education Society's* Modern College of Arts, Science and Commerce (*Autonomous*), Shivajinagar, Pune-411005, India.

^b Department of Chemistry, Savitribai Phule Pune University (*formerly University of Pune*), Ganeshkhind, Pune-411007, India ^cDepartment of Chemistry, University of Kashmir, Hazratbal, Srinagar,

Jammu and Kashmir-190006, India.

*Corresponding authors Email: jagtapchemistry@moderncollegepune.edu.in and masoodku2@gmail.com

Supplementary Data:

Fig.S1: SEM micrographs of CuO and ZnO series materials

Fig.S2: Particle size distribution plots of CuO series and ZnO series materials

Fig. S3: Absorption spectra of CuO and ZnO series materials

Figure S4: Tauc plots of CuO and ZnO series photocatalysts

Figure S5: Degradation plots of M.B, PAN, C.V and DCP-IP using CuO series photocatalysts

Figure S6: Degradation plots of M.B, PAN, C.V and DCP-IP using ZnO series photocatalysts

Figure S7: Kinetic plots for NBT degradation

Fig.S8 FTIR spectra depicting oxidation of benzaldehyde using CuO-5 and ZnO-5 catalysts

Fig.S1 SEM micrographs of CuO and ZnO series materials depicting fine granular and peanut shaped morphology of CuO and ZnO crystallites using different binary EIM mixtures.

Fig.S2 Particle size distribution plots of: (A) CuO series (B) ZnO series materials synthesized using different binary EIM mixtures (1,5 represent pure isoeugenol and eugenol respectively) (Gaussian curve fitting red line).

Fig.S3 Absorption spectra of CuO and ZnO series materials depicting distinctive peak at 373nm corresponding to CuO and ZnO (1,5 represent pure isoeugenol and eugenol respectively).

Fig.S4 Tauc plots for calculating energy band gaps of (A) CuO series photocatalysts and (B) ZnO series photocatalysts (1,5 represent pure isoeugenol and eugenol respectively).

Fig.S5 Photodegradation rates of M.B, PAN, C.V and DCP-IP dyes in presence of CuO series photocatalysts under natural sunlight (1,5 represent pure isoeugenol and eugenol respectively).

Fig.S6 Photodegradation rates of M.B,PAN,C.Vand DCP-IP dyes in presence of ZnO series photocatalysts under natural sunlight (1,5 represent pure isoeugenol and eugenol respectively)

Fig.S7 Pseudo-first order kinetic plots for NBT degradation using CuO-5 and ZnO-5 photocatalysts (5 represents pure eugenol)

Fig.S8 FTIR spectra depicting oxidation of benzaldehyde to benzoic acid over CuO-5 and ZnO-5 catalyst surfaces (5 represents pure eugenol).